Photonic integrated beam delivery for a rubidium 3D magneto-optical trap
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-38818-6
Download full text from publisher
References listed on IDEAS
- A. D. Tranter & H. J. Slatyer & M. R. Hush & A. C. Leung & J. L. Everett & K. V. Paul & P. Vernaz-Gris & P. K. Lam & B. C. Buchler & G. T. Campbell, 2018. "Multiparameter optimisation of a magneto-optical trap using deep learning," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Nitesh Chauhan & Andrei Isichenko & Kaikai Liu & Jiawei Wang & Qiancheng Zhao & Ryan O. Behunin & Peter T. Rakich & Andrew M. Jayich & C. Fertig & C. W. Hoyt & Daniel J. Blumenthal, 2021. "Visible light photonic integrated Brillouin laser," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Xin Meng & Youwei Zhang & Xichang Zhang & Shenchao Jin & Tingran Wang & Liang Jiang & Liantuan Xiao & Suotang Jia & Yanhong Xiao, 2023. "Machine learning assisted vector atomic magnetometry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Fan Yang & Flavien Gyger & Adrien Godet & Jacques Chrétien & Li Zhang & Meng Pang & Jean-Charles Beugnot & Luc Thévenaz, 2022. "Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Malte Reinschmidt & József Fortágh & Andreas Günther & Valentin V. Volchkov, 2024. "Reinforcement learning in cold atom experiments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zong-Kai Liu & Li-Hua Zhang & Bang Liu & Zheng-Yuan Zhang & Guang-Can Guo & Dong-Sheng Ding & Bao-Sen Shi, 2022. "Deep learning enhanced Rydberg multifrequency microwave recognition," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38818-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.