IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24926-8.html
   My bibliography  Save this article

Visible light photonic integrated Brillouin laser

Author

Listed:
  • Nitesh Chauhan

    (University of California Santa Barbara)

  • Andrei Isichenko

    (University of California Santa Barbara)

  • Kaikai Liu

    (University of California Santa Barbara)

  • Jiawei Wang

    (University of California Santa Barbara)

  • Qiancheng Zhao

    (University of California Santa Barbara)

  • Ryan O. Behunin

    (Northern Arizona University
    Northern Arizona University)

  • Peter T. Rakich

    (Yale University)

  • Andrew M. Jayich

    (University of California Santa Barbara)

  • C. Fertig

    (Honeywell International)

  • C. W. Hoyt

    (Honeywell International)

  • Daniel J. Blumenthal

    (University of California Santa Barbara)

Abstract

Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm−2, and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.

Suggested Citation

  • Nitesh Chauhan & Andrei Isichenko & Kaikai Liu & Jiawei Wang & Qiancheng Zhao & Ryan O. Behunin & Peter T. Rakich & Andrew M. Jayich & C. Fertig & C. W. Hoyt & Daniel J. Blumenthal, 2021. "Visible light photonic integrated Brillouin laser," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24926-8
    DOI: 10.1038/s41467-021-24926-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24926-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24926-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei Isichenko & Nitesh Chauhan & Debapam Bose & Jiawei Wang & Paul D. Kunz & Daniel J. Blumenthal, 2023. "Photonic integrated beam delivery for a rubidium 3D magneto-optical trap," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Fan Yang & Flavien Gyger & Adrien Godet & Jacques Chrétien & Li Zhang & Meng Pang & Jean-Charles Beugnot & Luc Thévenaz, 2022. "Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24926-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.