IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38384-x.html
   My bibliography  Save this article

Solvent control of water O−H bonds for highly reversible zinc ion batteries

Author

Listed:
  • Yanyan Wang

    (The University of Adelaide)

  • Zhijie Wang

    (The University of Adelaide)

  • Wei Kong Pang

    (University of Wollongong)

  • Wilford Lie

    (University of Wollongong)

  • Jodie A. Yuwono

    (The University of Adelaide
    Australian National University)

  • Gemeng Liang

    (The University of Adelaide)

  • Sailin Liu

    (The University of Adelaide)

  • Anita M. D’ Angelo

    (Australian Nuclear Science and Technology Organisation (ANSTO))

  • Jiaojiao Deng

    (Tsinghua University)

  • Yameng Fan

    (University of Wollongong)

  • Kenneth Davey

    (The University of Adelaide)

  • Baohua Li

    (Tsinghua University)

  • Zaiping Guo

    (The University of Adelaide)

Abstract

Aqueous Zn-ion batteries have attracted increasing research interest; however, the development of these batteries has been hindered by several challenges, including dendrite growth, Zn corrosion, cathode material degradation, limited temperature adaptability and electrochemical stability window, which are associated with water activity and the solvation structure of electrolytes. Here we report that water activity is suppressed by increasing the electron density of the water protons through interactions with highly polar dimethylacetamide and trimethyl phosphate molecules. Meanwhile, the Zn corrosion in the hybrid electrolyte is mitigated, and the electrochemical stability window and the operating temperature of the electrolyte are extended. The dimethylacetamide alters the surface energy of Zn, guiding the (002) plane dominated deposition of Zn. Molecular dynamics simulation evidences Zn2+ ions are solvated with fewer water molecules, resulting in lower lattice strain in the NaV3O8·1.5H2O cathode during the insertion of hydrated Zn2+ ions, boosting the lifespan of Zn|| NaV3O8·1.5H2O cell to 3000 cycles.

Suggested Citation

  • Yanyan Wang & Zhijie Wang & Wei Kong Pang & Wilford Lie & Jodie A. Yuwono & Gemeng Liang & Sailin Liu & Anita M. D’ Angelo & Jiaojiao Deng & Yameng Fan & Kenneth Davey & Baohua Li & Zaiping Guo, 2023. "Solvent control of water O−H bonds for highly reversible zinc ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38384-x
    DOI: 10.1038/s41467-023-38384-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38384-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38384-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weike Ye & Chi Chen & Zhenbin Wang & Iek-Heng Chu & Shyue Ping Ong, 2018. "Deep neural networks for accurate predictions of crystal stability," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Shi & Jinhao Xie & Jin Wang & Shilei Xie & Zujin Yang & Xihong Lu, 2024. "A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38384-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.