IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38249-3.html
   My bibliography  Save this article

Critical nematic correlations throughout the superconducting doping range in Bi2−zPbzSr2−yLayCuO6+x

Author

Listed:
  • Can-Li Song

    (Harvard University)

  • Elizabeth J. Main

    (Harvard University)

  • Forrest Simmons

    (Purdue University
    Purdue Quantum Science and Engineering Institute)

  • Shuo Liu

    (Purdue University)

  • Benjamin Phillabaum

    (Purdue University)

  • Karin A. Dahmen

    (University of Illinois)

  • Eric W. Hudson

    (The Pennsylvania State University)

  • Jennifer E. Hoffman

    (Harvard University)

  • Erica W. Carlson

    (Purdue University
    Purdue Quantum Science and Engineering Institute)

Abstract

Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-Tc superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi2−zPbzSr2−yLayCuO6+x. The ratio of the phase correlation length ξCDW to the orientation correlation length ξorient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.

Suggested Citation

  • Can-Li Song & Elizabeth J. Main & Forrest Simmons & Shuo Liu & Benjamin Phillabaum & Karin A. Dahmen & Eric W. Hudson & Jennifer E. Hoffman & Erica W. Carlson, 2023. "Critical nematic correlations throughout the superconducting doping range in Bi2−zPbzSr2−yLayCuO6+x," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38249-3
    DOI: 10.1038/s41467-023-38249-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38249-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38249-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. A. Kivelson & E. Fradkin & V. J. Emery, 1998. "Electronic liquid-crystal phases of a doped Mott insulator," Nature, Nature, vol. 393(6685), pages 550-553, June.
    2. B. Drossel & K. Dahmen, 1998. "Depinning of a domain wall in the 2d random-field Ising model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(4), pages 485-496, June.
    3. M. J. Lawler & K. Fujita & Jhinhwan Lee & A. R. Schmidt & Y. Kohsaka & Chung Koo Kim & H. Eisaki & S. Uchida & J. C. Davis & J. P. Sethna & Eun-Ah Kim, 2010. "Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states," Nature, Nature, vol. 466(7304), pages 347-351, July.
    4. W. Tabis & Y. Li & M. Le Tacon & L. Braicovich & A. Kreyssig & M. Minola & G. Dellea & E. Weschke & M. J. Veit & M. Ramazanoglu & A. I. Goldman & T. Schmitt & G. Ghiringhelli & N. Barišić & M. K. Chan, 2014. "Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    5. Y. Kohsaka & C. Taylor & P. Wahl & A. Schmidt & Jhinhwan Lee & K. Fujita & J. W. Alldredge & K. McElroy & Jinho Lee & H. Eisaki & S. Uchida & D.-H. Lee & J. C. Davis, 2008. "How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ," Nature, Nature, vol. 454(7208), pages 1072-1078, August.
    6. B. Phillabaum & E.W. Carlson & K.A. Dahmen, 2012. "Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    7. T. Hanaguri & C. Lupien & Y. Kohsaka & D.-H. Lee & M. Azuma & M. Takano & H. Takagi & J. C. Davis, 2004. "A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2," Nature, Nature, vol. 430(7003), pages 1001-1005, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changwei Zou & Jaewon Choi & Qizhi Li & Shusen Ye & Chaohui Yin & Mirian Garcia-Fernandez & Stefano Agrestini & Qingzheng Qiu & Xinqiang Cai & Qian Xiao & Xingjiang Zhou & Ke-Jin Zhou & Yayu Wang & Yi, 2024. "Evolution from a charge-ordered insulator to a high-temperature superconductor in Bi2Sr2(Ca,Dy)Cu2O8+δ," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Geng Li & Haitao Yang & Peijie Jiang & Cong Wang & Qiuzhen Cheng & Shangjie Tian & Guangyuan Han & Chengmin Shen & Xiao Lin & Hechang Lei & Wei Ji & Ziqiang Wang & Hong-Jun Gao, 2022. "Chirality locking charge density waves in a chiral crystal," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Pereira, A.P.P. & Fernandes, J.P. & Atman, A.P.F. & Acebal, J.L., 2018. "Parameter calibration between models and simulations: Connecting linear and non-linear descriptions of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 369-382.
    4. C. C. Tam & M. Zhu & J. Ayres & K. Kummer & F. Yakhou-Harris & J. R. Cooper & A. Carrington & S. M. Hayden, 2022. "Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Ziyuan Chen & Dong Li & Zouyouwei Lu & Yue Liu & Jiakang Zhang & Yuanji Li & Ruotong Yin & Mingzhe Li & Tong Zhang & Xiaoli Dong & Ya-Jun Yan & Dong-Lai Feng, 2023. "Charge order driven by multiple-Q spin fluctuations in heavily electron-doped iron selenide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Peizhi Mai & Nathan S. Nichols & Seher Karakuzu & Feng Bao & Adrian Del Maestro & Thomas A. Maier & Steven Johnston, 2023. "Robust charge-density-wave correlations in the electron-doped single-band Hubbard model," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. V. Oliviero & S. Benhabib & I. Gilmutdinov & B. Vignolle & L. Drigo & M. Massoudzadegan & M. Leroux & G. L. J. A. Rikken & A. Forget & D. Colson & D. Vignolles & C. Proust, 2022. "Magnetotransport signatures of antiferromagnetism coexisting with charge order in the trilayer cuprate HgBa2Ca2Cu3O8+δ," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Huanzhi Yang & Yunjun Luo & Bixin Jin & Shumeng Chi & Xiaoyu Li, 2024. "Convoluted micellar morphological transitions driven by tailorable mesogenic ordering effect from discotic mesogen-containing block copolymer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Shinji Kawasaki & Nao Tsukuda & Chengtian Lin & Guo-qing Zheng, 2024. "Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2−xLaxCuO6 superconductor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Shusen Ye & Miao Xu & Hongtao Yan & Zi-Xiang Li & Changwei Zou & Xintong Li & Zhenqi Hao & Chaohui Yin & Yiwen Chen & Xingjiang Zhou & Dung-Hai Lee & Yayu Wang, 2024. "Emergent normal fluid in the superconducting ground state of overdoped cuprates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. A. Mesaros & G. D. Gu & F. Massee, 2024. "Topologically trivial gap-filling in superconducting Fe(Se,Te) by one-dimensional defects," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    12. Zengle Huang & Hemian Yi & Daniel Kaplan & Lujin Min & Hengxin Tan & Ying-Ting Chan & Zhiqiang Mao & Binghai Yan & Cui-Zu Chang & Weida Wu, 2024. "Hidden non-collinear spin-order induced topological surface states," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Yang Luo & Yulei Han & Jinjin Liu & Hui Chen & Zihao Huang & Linwei Huai & Hongyu Li & Bingqian Wang & Jianchang Shen & Shuhan Ding & Zeyu Li & Shuting Peng & Zhiyuan Wei & Yu Miao & Xiupeng Sun & Zhi, 2023. "A unique van Hove singularity in kagome superconductor CsV3-xTaxSb5 with enhanced superconductivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Guerrero, Alejandra I. & Stariolo, Daniel A., 2017. "Pair correlations and structure factor of the J1-J2 square lattice Ising model in an external field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 596-606.
    15. Lichen Wang & Guanhong He & Zichen Yang & Mirian Garcia-Fernandez & Abhishek Nag & Kejin Zhou & Matteo Minola & Matthieu Le Tacon & Bernhard Keimer & Yingying Peng & Yuan Li, 2022. "Paramagnons and high-temperature superconductivity in a model family of cuprates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Alexander LaFleur & Hong Li & Corey E. Frank & Muxian Xu & Siyu Cheng & Ziqiang Wang & Nicholas P. Butch & Ilija Zeljkovic, 2024. "Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. I. Vinograd & S. M. Souliou & A.-A. Haghighirad & T. Lacmann & Y. Caplan & M. Frachet & M. Merz & G. Garbarino & Y. Liu & S. Nakata & K. Ishida & H. M. L. Noad & M. Minola & B. Keimer & D. Orgad & C. , 2024. "Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa2Cu3Oy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Hui Chen & Yuqing Xing & Hengxin Tan & Li Huang & Qi Zheng & Zihao Huang & Xianghe Han & Bin Hu & Yuhan Ye & Yan Li & Yao Xiao & Hechang Lei & Xianggang Qiu & Enke Liu & Haitao Yang & Ziqiang Wang & B, 2024. "Atomically precise engineering of spin–orbit polarons in a kagome magnetic Weyl semimetal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38249-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.