IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38244-8.html
   My bibliography  Save this article

Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures

Author

Listed:
  • Masahito Inagaki

    (Nagoya University)

  • Naoko Abe

    (Nagoya University)

  • Zhenmin Li

    (Nagoya University)

  • Yuko Nakashima

    (Nagoya University
    Nagoya University)

  • Susit Acharyya

    (Nagoya University)

  • Kazuya Ogawa

    (Nagoya University)

  • Daisuke Kawaguchi

    (Nagoya University)

  • Haruka Hiraoka

    (Nagoya University)

  • Ayaka Banno

    (Nagoya University)

  • Zheyu Meng

    (Nagoya University)

  • Mizuki Tada

    (Nagoya University)

  • Tatsuma Ishida

    (Nagoya University)

  • Pingxue Lyu

    (Nagoya University)

  • Kengo Kokubo

    (Nagoya University)

  • Hirotaka Murase

    (Nagoya University)

  • Fumitaka Hashiya

    (Nagoya University)

  • Yasuaki Kimura

    (Nagoya University)

  • Satoshi Uchida

    (Kyoto Prefectural University of Medicine
    Kawasaki Institute of Industrial Promotion
    Tokyo Medical and Dental University (TMDU))

  • Hiroshi Abe

    (Nagoya University
    Nagoya University
    Japan Science and Technology Agency
    Nagoya University)

Abstract

Starting with the clinical application of two vaccines in 2020, mRNA therapeutics are currently being investigated for a variety of applications. Removing immunogenic uncapped mRNA from transcribed mRNA is critical in mRNA research and clinical applications. Commonly used capping methods provide maximum capping efficiency of around 80–90% for widely used Cap-0- and Cap-1-type mRNAs. However, uncapped and capped mRNA possesses almost identical physicochemical properties, posing challenges to their physical separation. In this work, we develop hydrophobic photocaged tag-modified cap analogs, which separate capped mRNA from uncapped mRNA by reversed-phase high-performance liquid chromatography. Subsequent photo-irradiation recovers footprint-free native capped mRNA. This approach provides 100% capping efficiency even in Cap-2-type mRNA with versatility applicable to 650 nt and 4,247 nt mRNA. We find that the Cap-2-type mRNA shows up to 3- to 4-fold higher translation activity in cultured cells and animals than the Cap-1-type mRNA prepared by the standard capping method.

Suggested Citation

  • Masahito Inagaki & Naoko Abe & Zhenmin Li & Yuko Nakashima & Susit Acharyya & Kazuya Ogawa & Daisuke Kawaguchi & Haruka Hiraoka & Ayaka Banno & Zheyu Meng & Mizuki Tada & Tatsuma Ishida & Pingxue Lyu , 2023. "Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38244-8
    DOI: 10.1038/s41467-023-38244-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38244-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38244-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ugur Sahin & Petra Oehm & Evelyna Derhovanessian & Robert A. Jabulowsky & Mathias Vormehr & Maike Gold & Daniel Maurus & Doreen Schwarck-Kokarakis & Andreas N. Kuhn & Tana Omokoko & Lena M. Kranz & Mu, 2020. "An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma," Nature, Nature, vol. 585(7823), pages 107-112, September.
    2. Vladimir Despic & Samie R. Jaffrey, 2023. "mRNA ageing shapes the Cap2 methylome in mammalian mRNA," Nature, Nature, vol. 614(7947), pages 358-366, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanbo Tai & Shengyong Feng & Benjie Chai & Shuaiyao Lu & Guangyu Zhao & Dong Chen & Wenhai Yu & Liting Ren & Huicheng Shi & Jing Lu & Zhuming Cai & Mujia Pang & Xu Tan & Penghua Wang & Jinzhong Lin & , 2023. "An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Jim Middelburg & Marjolein Sluijter & Gaby Schaap & Büşra Göynük & Katy Lloyd & Vitalijs Ovcinnikovs & Gijs G. Zom & Renoud J. Marijnissen & Christianne Groeneveldt & Lisa Griffioen & Gerwin G. W. San, 2024. "T-cell stimulating vaccines empower CD3 bispecific antibody therapy in solid tumors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Wojciech Barczak & Simon M. Carr & Geng Liu & Shonagh Munro & Annalisa Nicastri & Lian Ni Lee & Claire Hutchings & Nicola Ternette & Paul Klenerman & Alexander Kanapin & Anastasia Samsonova & Nicholas, 2023. "Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Yan Li & Qianmin Wang & Yanhui Xu & Ze Li, 2024. "Structures of co-transcriptional RNA capping enzymes on paused transcription complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Matthew T.J. Halma & Jessica Rose & Theresa Lawrie, 2023. "The Novelty of mRNA Viral Vaccines and Potential Harms: A Scoping Review," J, MDPI, vol. 6(2), pages 1-16, April.
    7. Emily K. Ninmer & Hong Zhu & Kimberly A. Chianese-Bullock & Margaret Mehren & Naomi B. Haas & Merrick I. Ross & Lynn T. Dengel & Craig L. Slingluff, 2024. "Multipeptide vaccines for melanoma in the adjuvant setting: long-term survival outcomes and post-hoc analysis of a randomized phase II trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Zhijian Li & Laura Amaya & Ruoxi Pi & Sean K. Wang & Alok Ranjan & Robert M. Waymouth & Catherine A. Blish & Howard Y. Chang & Paul A. Wender, 2023. "Charge-altering releasable transporters enhance mRNA delivery in vitro and exhibit in vivo tropism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38244-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.