IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37789-y.html
   My bibliography  Save this article

Associate toxin-antitoxin with CRISPR-Cas to kill multidrug-resistant pathogens

Author

Listed:
  • Rui Wang

    (Chinese Academy of Sciences
    Chengdu Medical College)

  • Xian Shu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huiwei Zhao

    (Chinese Academy of Sciences)

  • Qiong Xue

    (Chinese Academy of Sciences)

  • Chao Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Aici Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Feiyue Cheng

    (Chinese Academy of Sciences)

  • Lingyun Wang

    (Chinese Academy of Sciences
    Shandong Agricultural University)

  • Yihan Zhang

    (Chinese Academy of Sciences
    Hebei University)

  • Jie Feng

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Nannan Wu

    (Shanghai Public Health Clinical Center, Fudan University)

  • Ming Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

CreTA, CRISPR-regulated toxin-antitoxin (TA), safeguards CRISPR-Cas immune systems by inducing cell dormancy/death upon their inactivation. Here, we characterize a bacterial CreTA associating with the I-F CRISPR-Cas in Acinetobacter. CreT is a distinct bactericidal small RNA likely targeting several essential RNA molecules that are required to initiate protein synthesis. CreA guides the CRISPR effector to transcriptionally repress CreT. We further demonstrate a proof-of-concept antimicrobial strategy named ATTACK, which AssociaTes TA and CRISPR-Cas to Kill multidrug resistant (MDR) pathogens. In this design, CRISPR-Cas is programed to target antibiotic resistance gene(s) to selectively kill MDR pathogens or cure their resistance, and when CRISPR-Cas is inactivated or suppressed by unwanted genetic or non-genetic events/factors, CreTA triggers cell death as the last resort. Our data highlight the diversity of RNA toxins coevolving with CRISPR-Cas, and illuminate a combined strategy of CRISPR and TA antimicrobials to ‘ATTACK’ MDR pathogens.

Suggested Citation

  • Rui Wang & Xian Shu & Huiwei Zhao & Qiong Xue & Chao Liu & Aici Wu & Feiyue Cheng & Lingyun Wang & Yihan Zhang & Jie Feng & Nannan Wu & Ming Li, 2023. "Associate toxin-antitoxin with CRISPR-Cas to kill multidrug-resistant pathogens," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37789-y
    DOI: 10.1038/s41467-023-37789-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37789-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37789-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blake Wiedenheft & Samuel H. Sternberg & Jennifer A. Doudna, 2012. "RNA-guided genetic silencing systems in bacteria and archaea," Nature, Nature, vol. 482(7385), pages 331-338, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    2. Vanessa M. Macias & Johanna R. Ohm & Jason L. Rasgon, 2017. "Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?," IJERPH, MDPI, vol. 14(9), pages 1-30, September.
    3. Kashif Ahmad & Ray Ming, 2024. "Harnessing Genetic Tools for Sustainable Bioenergy: A Review of Sugarcane Biotechnology in Biofuel Production," Agriculture, MDPI, vol. 14(8), pages 1-22, August.
    4. Chongzhi Gong & Shengchan Huang & Rentao Song & Weiwei Qi, 2021. "Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize," Agriculture, MDPI, vol. 11(5), pages 1-11, May.
    5. Rohan V Koodli & Benjamin Keep & Katherine R Coppess & Fernando Portela & Eterna participants & Rhiju Das, 2019. "EternaBrain: Automated RNA design through move sets and strategies from an Internet-scale RNA videogame," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-22, June.
    6. Eman A. Ageely & Ramadevi Chilamkurthy & Sunit Jana & Leonora Abdullahu & Daniel O’Reilly & Philip J. Jensik & Masad J. Damha & Keith T. Gagnon, 2021. "Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Changshuang Jing & Min Wei & Peng Fang & Rentao Song & Weiwei Qi, 2021. "Pollen-Specific CRISPR/Cas9 System to Increase Heritable Gene Mutations in Maize," Agriculture, MDPI, vol. 11(8), pages 1-10, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37789-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.