IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37625-3.html
   My bibliography  Save this article

Structural insights into how augmin augments the mitotic spindle

Author

Listed:
  • Szymon W. Manka

    (University College London)

Abstract

Cell division critically requires amplification of microtubules (MTs) in the bipolar mitotic spindle. This relies on the filamentous augmin complex that enables MT branching. Studies by Gabel et al., Zupa et al. and Travis et al. describe consistent integrated atomic models of the extraordinarily flexible augmin complex. Their work prompts the question: what is this flexibility really needed for?

Suggested Citation

  • Szymon W. Manka, 2023. "Structural insights into how augmin augments the mitotic spindle," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37625-3
    DOI: 10.1038/s41467-023-37625-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37625-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37625-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Zupa & Martin Würtz & Annett Neuner & Thomas Hoffmann & Mandy Rettel & Anna Böhler & Bram J. A. Vermeulen & Sebastian Eustermann & Elmar Schiebel & Stefan Pfeffer, 2022. "The augmin complex architecture reveals structural insights into microtubule branching," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Clinton A. Gabel & Zhuang Li & Andrew G. DeMarco & Ziguo Zhang & Jing Yang & Mark C. Hall & David Barford & Leifu Chang, 2022. "Molecular architecture of the augmin complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Sophie M. Travis & Brian P. Mahon & Wei Huang & Meisheng Ma & Michael J. Rale & Jodi Kraus & Derek J. Taylor & Rui Zhang & Sabine Petry, 2023. "Integrated model of the vertebrate augmin complex," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie M. Travis & Brian P. Mahon & Wei Huang & Meisheng Ma & Michael J. Rale & Jodi Kraus & Derek J. Taylor & Rui Zhang & Sabine Petry, 2023. "Integrated model of the vertebrate augmin complex," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Venecia Alexandria Valdez & Meisheng Ma & Bernardo Gouveia & Rui Zhang & Sabine Petry, 2024. "HURP facilitates spindle assembly by stabilizing microtubules and working synergistically with TPX2," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37625-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.