IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37479-9.html
   My bibliography  Save this article

Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering

Author

Listed:
  • Bin Zhu

    (Harbin Institute of Technology)

  • Shanshan He

    (Harbin Institute of Technology)

  • Yan Yang

    (Harbin Institute of Technology)

  • Songwei Li

    (Zhengzhou University)

  • Cher Hon Lau

    (The University of Edinburgh)

  • Shaomin Liu

    (Curtin University)

  • Lu Shao

    (Harbin Institute of Technology)

Abstract

Advances in membrane technologies are significant for mitigating global climate change because of their low cost and easy operation. Although mixed-matrix membranes (MMMs) obtained via the combination of metal-organic frameworks (MOFs) and a polymer matrix are promising for energy-efficient gas separation, the achievement of a desirable match between polymers and MOFs for the development of advanced MMMs is challenging, especially when emerging highly permeable materials such as polymers of intrinsic microporosity (PIMs) are deployed. Here, we report a molecular soldering strategy featuring multifunctional polyphenols in tailored polymer chains, well-designed hollow MOF structures, and defect-free interfaces. The exceptional adhesion nature of polyphenols results in dense packing and visible stiffness of PIM-1 chains with strengthened selectivity. The architecture of the hollow MOFs leads to free mass transfer and substantially improves permeability. These structural advantages act synergistically to break the permeability-selectivity trade-off limit in MMMs and surpass the conventional upper bound. This polyphenol molecular soldering method has been validated for various polymers, providing a universal pathway to prepare advanced MMMs with desirable performance for diverse applications beyond carbon capture.

Suggested Citation

  • Bin Zhu & Shanshan He & Yan Yang & Songwei Li & Cher Hon Lau & Shaomin Liu & Lu Shao, 2023. "Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37479-9
    DOI: 10.1038/s41467-023-37479-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37479-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37479-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Behnam Ghalei & Kento Sakurai & Yosuke Kinoshita & Kazuki Wakimoto & Ali Pournaghshband Isfahani & Qilei Song & Kazuki Doitomi & Shuhei Furukawa & Hajime Hirao & Hiromu Kusuda & Susumu Kitagawa & Easa, 2017. "Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
    2. Pengtang Wang & Hao Yang & Cheng Tang & Yu Wu & Yao Zheng & Tao Cheng & Kenneth Davey & Xiaoqing Huang & Shi-Zhang Qiao, 2022. "Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Xiuling Chen & Yanfang Fan & Lei Wu & Linzhou Zhang & Dong Guan & Canghai Ma & Nanwen Li, 2021. "Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tae Hoon Lee & Byung Kwan Lee & Seung Yeon Yoo & Hyunhee Lee & Wan-Ni Wu & Zachary P. Smith & Ho Bum Park, 2023. "PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Di Wang & Hyun Dong Jung & Shikai Liu & Jiayi Chen & Haozhou Yang & Qian He & Shibo Xi & Seoin Back & Lei Wang, 2024. "Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Niaz Ali Khan & Runnan Zhang & Xiaoyao Wang & Li Cao & Chandra S. Azad & Chunyang Fan & Jinqiu Yuan & Mengying Long & Hong Wu & Mark. A. Olson & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Laigang Hu & Wenhao Wu & Min Hu & Ling Jiang & Daohui Lin & Jian Wu & Kun Yang, 2024. "Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Lei Chen & Junmei Chen & Weiwei Fu & Jiayi Chen & Di Wang & Yukun Xiao & Shibo Xi & Yongfei Ji & Lei Wang, 2024. "Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Xiao Chen & Shuaiqiang Jia & Jianxin Zhai & Jiapeng Jiao & Mengke Dong & Cheng Xue & Ting Deng & Hailian Cheng & Zhanghui Xia & Chunjun Chen & Xueqing Xing & Jianrong Zeng & Haihong Wu & Mingyuan He &, 2024. "Multivalent Cu sites synergistically adjust carbonaceous intermediates adsorption for electrocatalytic ethanol production," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Xin Yu Zhang & Zhen Xin Lou & Jiacheng Chen & Yuanwei Liu & Xuefeng Wu & Jia Yue Zhao & Hai Yang Yuan & Minghui Zhu & Sheng Dai & Hai Feng Wang & Chenghua Sun & Peng Fei Liu & Hua Gui Yang, 2023. "Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Xiuling Chen & Yanfang Fan & Lei Wu & Linzhou Zhang & Dong Guan & Canghai Ma & Nanwen Li, 2021. "Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Jiahui Bi & Pengsong Li & Jiyuan Liu & Shuaiqiang Jia & Yong Wang & Qinggong Zhu & Zhimin Liu & Buxing Han, 2023. "Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37479-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.