BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37116-5
Download full text from publisher
References listed on IDEAS
- François Lamoureux & Marc Baud’huin & Lidia Rodriguez Calleja & Camille Jacques & Martine Berreur & Françoise Rédini & Fernando Lecanda & James E. Bradner & Dominique Heymann & Benjamin Ory, 2014. "Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle," Nature Communications, Nature, vol. 5(1), pages 1-14, May.
- David E. Place & R. K. Subbarao Malireddi & Jieun Kim & Peter Vogel & Masahiro Yamamoto & Thirumala-Devi Kanneganti, 2021. "Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Hiroshi Takayanagi & Sunhwa Kim & Koichi Matsuo & Hiroshi Suzuki & Tomohiko Suzuki & Kojiro Sato & Taeko Yokochi & Hiromi Oda & Kozo Nakamura & Nobutaka Ida & Erwin F. Wagner & Tadatsugu Taniguchi, 2002. "RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β," Nature, Nature, vol. 416(6882), pages 744-749, April.
- Jovylyn Gatchalian & Shivani Malik & Josephine Ho & Dong-Sung Lee & Timothy W. R. Kelso & Maxim N. Shokhirev & Jesse R. Dixon & Diana C. Hargreaves, 2018. "A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
- Simon Makin, 2022. "The destructive power of PROTACs could tackle prostate cancer," Nature, Nature, vol. 609(7927), pages 41-41, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiahui Du & Yili Liu & Jinrui Sun & Enhui Yao & Jingyi Xu & Xiaolin Wu & Ling Xu & Mingliang Zhou & Guangzheng Yang & Xinquan Jiang, 2024. "ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Luca Pagliaroli & Patrizia Porazzi & Alyxandra T. Curtis & Chiara Scopa & Harald M. M. Mikkers & Christian Freund & Lucia Daxinger & Sandra Deliard & Sarah A. Welsh & Sarah Offley & Connor A. Ott & Br, 2021. "Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Bess P. Rosen & Qing V. Li & Hyein S. Cho & Dingyu Liu & Dapeng Yang & Sarah Graff & Jielin Yan & Renhe Luo & Nipun Verma & Jeyaram R. Damodaran & Hanuman T. Kale & Samuel J. Kaplan & Michael A. Beer , 2024. "Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Jiahui Du & Yili Liu & Jinrui Sun & Enhui Yao & Jingyi Xu & Xiaolin Wu & Ling Xu & Mingliang Zhou & Guangzheng Yang & Xinquan Jiang, 2024. "ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Muran Xiao & Shinji Kondo & Masaki Nomura & Shinichiro Kato & Koutarou Nishimura & Weijia Zang & Yifan Zhang & Tomohiro Akashi & Aaron Viny & Tsukasa Shigehiro & Tomokatsu Ikawa & Hiromi Yamazaki & Mi, 2023. "BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- L. Paige Ferguson & Jovylyn Gatchalian & Matthew L. McDermott & Mari Nakamura & Kendall Chambers & Nirakar Rajbhandari & Nikki K. Lytle & Sara Brin Rosenthal & Michael Hamilton & Sonia Albini & Martin, 2023. "Smarcd3 is an epigenetic modulator of the metabolic landscape in pancreatic ductal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37116-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.