IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36524-x.html
   My bibliography  Save this article

Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration

Author

Listed:
  • Junhyeok Kang

    (Yonsei University)

  • Yeongnam Ko

    (Konkuk University)

  • Jeong Pil Kim

    (Yonsei University)

  • Ju Yeon Kim

    (Yonsei University)

  • Jiwon Kim

    (Yonsei University)

  • Ohchan Kwon

    (Yonsei University)

  • Ki Chul Kim

    (Konkuk University)

  • Dae Woo Kim

    (Yonsei University)

Abstract

Layered two-dimensional materials can potentially be utilized for organic solvent nanofiltration (OSN) membrane fabrication owing to their precise molecular sieving by the interlayer structure and excellent stability in harsh conditions. Nevertheless, the extensive tortuosity of nanochannels and bulky solvent molecules impede rapid permeability. Herein, nanoporous graphene (NG) with a high density of sp2 carbon domain was synthesized via sequential thermal pore activation of graphene oxide (GO) and microwave-assisted reduction. Due to the smooth sp2 carbon domain surfaces and dense nanopores, the microwave-treated nanoporous graphene membrane exhibited ultrafast organic solvent permeance (e.g., IPA: 2278 LMH/bar) with excellent stability under practical cross-flow conditions. Furthermore, the membrane molecular weight cut-off (MWCO) is switchable from 500 Da size of molecule to sub-nanometer-size molecules depending on the solvent type, and this switching occurs spontaneously with solvent change. These properties indicate feasibility of multiple (both binary and ternary) organic mixture separation using a single membrane. The nanochannel structure effect on solvent transport is also investigated using computation calculations.

Suggested Citation

  • Junhyeok Kang & Yeongnam Ko & Jeong Pil Kim & Ju Yeon Kim & Jiwon Kim & Ohchan Kwon & Ki Chul Kim & Dae Woo Kim, 2023. "Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36524-x
    DOI: 10.1038/s41467-023-36524-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36524-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36524-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benyu Qi & Xiaofan He & Gaofeng Zeng & Yichang Pan & Guihua Li & Guojuan Liu & Yanfeng Zhang & Wei Chen & Yuhan Sun, 2017. "Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Zongyao Zhou & Xiang Li & Dong Guo & Digambar B. Shinde & Dongwei Lu & Long Chen & Xiaowei Liu & Li Cao & Ammar M. Aboalsaud & Yunxia Hu & Zhiping Lai, 2020. "Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Yu-Sheng Su & Arumugam Manthiram, 2012. "Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    4. Wanyu Zhang & Hai Xu & Fei Xie & Xiaohua Ma & Bo Niu & Mingqi Chen & Hongyu Zhang & Yayun Zhang & Donghui Long, 2022. "General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai Liu & Xinxi Huang & Yang Wang & Baian Kuang & Wanbin Li, 2024. "Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianyi & Qin, Weiwei & Zhu, Xixi & Teng, Yongqiang, 2020. "Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries," Energy, Elsevier, vol. 199(C).
    2. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Liu, Qin & Zhu, Jinghui & Zhang, Liwen & Qiu, Yejun, 2018. "Recent advances in energy materials by electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1825-1858.
    4. Xun Sun & Yue Qiu & Bo Jiang & Zhaoyu Chen & Chenghao Zhao & Hao Zhou & Li Yang & Lishuang Fan & Yu Zhang & Naiqing Zhang, 2023. "Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Byong-June Lee & Chen Zhao & Jeong-Hoon Yu & Tong-Hyun Kang & Hyean-Yeol Park & Joonhee Kang & Yongju Jung & Xiang Liu & Tianyi Li & Wenqian Xu & Xiao-Bing Zuo & Gui-Liang Xu & Khalil Amine & Jong-Sun, 2022. "Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Nitesh Kumar & Lingaraj Pradhan & Bikash Kumar Jena, 2022. "Recent progress on novel current collector electrodes for energy storage devices: Supercapacitors," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    7. Wanqi Mo & Zihao Zhu & Fanwei Kong & Xiaobai Li & Yu Chen & Huaqian Liu & Zhiyong Cheng & Hongwei Ma & Bin Li, 2022. "Controllable synthesis of conjugated microporous polymer films for ultrasensitive detection of chemical warfare agents," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yi-Man Wang & Fang-Qin Yan & Qian-You Wang & Chen-Xia Du & Li-Ya Wang & Bo Li & Shan Wang & Shuang-Quan Zang, 2024. "Single-atom tailored atomically-precise nanoclusters for enhanced electrochemical reduction of CO2-to-CO activity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zongyao Zhou & Kangning Zhao & Heng-Yu Chi & Yueqing Shen & Shuqing Song & Kuang-Jung Hsu & Mojtaba Chevalier & Wenxiong Shi & Kumar Varoon Agrawal, 2024. "Electrochemical-repaired porous graphene membranes for precise ion-ion separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Mudassir, Muhammad Ahmad & Kousar, Shazia & Ehsan, Muhammad & Usama, Muhammad & Sattar, Umer & Aleem, Muhammad & Naheed, Irum & Saeed, Osama Bin & Ahmad, Mehmood & Akbar, Hafiz Favad & Ud Din, Muhamma, 2023. "Emulsion-derived porous carbon-based materials for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36524-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.