IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36320-7.html
   My bibliography  Save this article

Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz

Author

Listed:
  • Christoph Otzen

    (Friedrich-Schiller-University Jena
    Deutsches Elektronen-Synchrotron DESY)

  • Hanns-Peter Liermann

    (Deutsches Elektronen-Synchrotron DESY)

  • Falko Langenhorst

    (Friedrich-Schiller-University Jena
    University of Hawai’i at Manoa)

Abstract

When affected by impact, quartz (SiO2) undergoes an abrupt transformation to glass lamellae, the planar deformation features (PDFs). This shock effect is the most reliable indicator of impacts and is decisive in identifying catastrophic collisions in the Earth´s record such as the Chicxulub impact. Despite the significance of PDFs, there is still no consensus how they form. Here, we present time-resolved in-situ synchroton X-ray diffraction data of single-crystal quartz rapidly compressed in a dynamic diamond anvil cell. These experiments provide evidence for the transformation of quartz at pressures above 15 GPa to lamellae of a metastable rosiaite (PbSb2O6)-type high-pressure phase with octahedrally coordinated silicon. This phase collapses during decompression to amorphous lamellae, which closely resemble PDFs in naturally shocked quartz. The identification of rosiaite-structured silica provides thus an explanation for lamellar amorphization of quartz. Furthermore, it suggests that the mixed phase region of the Hugoniot curve may be related to the progressive formation of rosiaite-structured silica.

Suggested Citation

  • Christoph Otzen & Hanns-Peter Liermann & Falko Langenhorst, 2023. "Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36320-7
    DOI: 10.1038/s41467-023-36320-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36320-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36320-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin M. Canup & Erik Asphaug, 2001. "Origin of the Moon in a giant impact near the end of the Earth's formation," Nature, Nature, vol. 412(6848), pages 708-712, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linus C. Erhard & Jochen Rohrer & Karsten Albe & Volker L. Deringer, 2024. "Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krot, Alexander M., 2009. "A statistical approach to investigate the formation of the solar system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1481-1500.
    2. Miki Nakajima & Hidenori Genda & Erik Asphaug & Shigeru Ida, 2022. "Large planets may not form fractionally large moons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36320-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.