IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28063-8.html
   My bibliography  Save this article

Large planets may not form fractionally large moons

Author

Listed:
  • Miki Nakajima

    (University of Rochester
    University of Rochester)

  • Hidenori Genda

    (Tokyo Institute of Technology)

  • Erik Asphaug

    (University of Arizona, Lunar and Planetary Laboratory)

  • Shigeru Ida

    (Tokyo Institute of Technology)

Abstract

One of the unique aspects of Earth is that it has a fractionally large Moon, which is thought to have formed from a Moon-forming disk generated by a giant impact. The Moon stabilizes the Earth’s spin axis at least by several degrees and contributes to Earth’s stable climate. Given that impacts are common during planet formation, exomoons, which are moons around planets in extrasolar systems, should be common as well, but no exomoon has been confirmed. Here we propose that an initially vapor-rich moon-forming disk is not capable of forming a moon that is large with respect to the size of the planet because growing moonlets, which are building blocks of a moon, experience strong gas drag and quickly fall toward the planet. Our impact simulations show that terrestrial and icy planets that are larger than ~1.3−1.6R⊕ produce entirely vapor disks, which fail to form a fractionally large moon. This indicates that (1) our model supports the Moon-formation models that produce vapor-poor disks and (2) rocky and icy exoplanets whose radii are smaller than ~1.6R⊕ are ideal candidates for hosting fractionally large exomoons.

Suggested Citation

  • Miki Nakajima & Hidenori Genda & Erik Asphaug & Shigeru Ida, 2022. "Large planets may not form fractionally large moons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28063-8
    DOI: 10.1038/s41467-022-28063-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28063-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28063-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin M. Canup & Erik Asphaug, 2001. "Origin of the Moon in a giant impact near the end of the Earth's formation," Nature, Nature, vol. 412(6848), pages 708-712, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krot, Alexander M., 2009. "A statistical approach to investigate the formation of the solar system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1481-1500.
    2. Christoph Otzen & Hanns-Peter Liermann & Falko Langenhorst, 2023. "Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28063-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.