IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35752-x.html
   My bibliography  Save this article

Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington’s disease

Author

Listed:
  • Ayano Matsushima

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Sergio Sebastian Pineda

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard
    MIT
    MIT Computer Science and Artificial Intelligence Laboratory)

  • Jill R. Crittenden

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Hyeseung Lee

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Kyriakitsa Galani

    (Broad Institute of MIT and Harvard
    MIT Computer Science and Artificial Intelligence Laboratory)

  • Julio Mantero

    (Broad Institute of MIT and Harvard
    MIT Computer Science and Artificial Intelligence Laboratory)

  • Geoffrey Tombaugh

    (PyschoGenics Inc.)

  • Manolis Kellis

    (Broad Institute of MIT and Harvard
    MIT
    MIT Computer Science and Artificial Intelligence Laboratory)

  • Myriam Heiman

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Ann M. Graybiel

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington’s disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.

Suggested Citation

  • Ayano Matsushima & Sergio Sebastian Pineda & Jill R. Crittenden & Hyeseung Lee & Kyriakitsa Galani & Julio Mantero & Geoffrey Tombaugh & Manolis Kellis & Myriam Heiman & Ann M. Graybiel, 2023. "Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35752-x
    DOI: 10.1038/s41467-022-35752-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35752-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35752-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francisco J. Garcia & Na Sun & Hyeseung Lee & Brianna Godlewski & Hansruedi Mathys & Kyriaki Galani & Blake Zhou & Xueqiao Jiang & Ayesha P. Ng & Julio Mantero & Li-Huei Tsai & David A. Bennett & Must, 2022. "Single-cell dissection of the human brain vasculature," Nature, Nature, vol. 603(7903), pages 893-899, March.
    2. Shahin Mohammadi & Jose Davila-Velderrain & Manolis Kellis, 2020. "A multiresolution framework to characterize single-cell state landscapes," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo D. Garma & Lisbeth Harder & Juan M. Barba-Reyes & Sergio Marco Salas & Mónica Díez-Salguero & Mats Nilsson & Alberto Serrano-Pozo & Bradley T. Hyman & Ana B. Muñoz-Manchado, 2024. "Interneuron diversity in the human dorsal striatum," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. BaDoi N. Phan & Madelyn H. Ray & Xiangning Xue & Chen Fu & Robert J. Fenster & Stephen J. Kohut & Jack Bergman & Suzanne N. Haber & Kenneth M. McCullough & Madeline K. Fish & Jill R. Glausier & Qiao S, 2024. "Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Ryan G. Lim & Osama Al-Dalahmah & Jie Wu & Maxwell P. Gold & Jack C. Reidling & Guomei Tang & Miriam Adam & David K. Dansu & Hye-Jin Park & Patrizia Casaccia & Ricardo Miramontes & Andrea M. Reyes-Ort, 2022. "Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    4. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Paula Punzon-Jimenez & Alba Machado-Lopez & Raul Perez-Moraga & Jaime Llera-Oyola & Daniela Grases & Marta Galvez-Viedma & Mustafa Sibai & Elena Satorres-Perez & Susana Lopez-Agullo & Rafael Badenes &, 2024. "Effect of aging on the human myometrium at single-cell resolution," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Fahad Paryani & Ji-Sun Kwon & Christopher W. Ng & Kelly Jakubiak & Nacoya Madden & Kenneth Ofori & Alice Tang & Hong Lu & Shengnan Xia & Juncheng Li & Aayushi Mahajan & Shawn M. Davidson & Anna O. Bas, 2024. "Multi-omic analysis of Huntington’s disease reveals a compensatory astrocyte state," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Weikang Gong & Yan Fu & Bang-Sheng Wu & Jingnan Du & Liu Yang & Ya-Ru Zhang & Shi-Dong Chen & JuJiao Kang & Ying Mao & Qiang Dong & Lan Tan & Jianfeng Feng & Wei Cheng & Jin-Tai Yu, 2024. "Whole-exome sequencing identifies protein-coding variants associated with brain iron in 29,828 individuals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Hyun Kim & Won Chang & Seok Joo Chae & Jong-Eun Park & Minseok Seo & Jae Kyoung Kim, 2024. "scLENS: data-driven signal detection for unbiased scRNA-seq data analysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Timothy F. Shay & Seongmin Jang & Tyler J. Brittain & Xinhong Chen & Beth Walker & Claire Tebbutt & Yujie Fan & Damien A. Wolfe & Cynthia M. Arokiaraj & Erin E. Sullivan & Xiaozhe Ding & Ting-Yu Wang , 2024. "Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Stergios Tsartsalis & Hannah Sleven & Nurun Fancy & Frank Wessely & Amy M. Smith & Nanet Willumsen & To Ka Dorcas Cheung & Michal J. Rokicki & Vicky Chau & Eseoghene Ifie & Combiz Khozoie & Olaf Ansor, 2024. "A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35752-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.