IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35711-6.html
   My bibliography  Save this article

Revealing the relationship between liquid fragility and medium-range order in silicate glasses

Author

Listed:
  • Ying Shi

    (Corning Incorporated)

  • Binghui Deng

    (Corning Incorporated)

  • Ozgur Gulbiten

    (Corning Incorporated)

  • Mathieu Bauchy

    (University of California)

  • Qi Zhou

    (University of California)

  • Jörg Neuefeind

    (Oak Ridge National Laboratory)

  • Stephen R. Elliott

    (University of Oxford)

  • Nicholas J. Smith

    (Corning Incorporated)

  • Douglas C. Allan

    (Corning Incorporated)

Abstract

Despite decades of studies, the nature of the glass transition remains elusive. In particular, the sharpness of the dynamical arrest of a melt at the glass transition is captured by its fragility. Here, we reveal that fragility is governed by the medium-range order structure. Based on neutron-diffraction data for a series of aluminosilicate glasses, we propose a measurable structural parameter that features a strong inverse correlation with fragility, namely, the average medium-range distance (MRD). We use in-situ high-temperature neutron-scattering data to discuss the physical origin of this correlation. We argue that glasses exhibiting low MRD values present an excess of small network rings. Such rings are unstable and deform more readily with changes in temperature, which tends to increase fragility. These results reveal that the sharpness of the dynamical arrest experienced by a silicate glass at the glass transition is surprisingly encoded into the stability of rings in its network.

Suggested Citation

  • Ying Shi & Binghui Deng & Ozgur Gulbiten & Mathieu Bauchy & Qi Zhou & Jörg Neuefeind & Stephen R. Elliott & Nicholas J. Smith & Douglas C. Allan, 2023. "Revealing the relationship between liquid fragility and medium-range order in silicate glasses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35711-6
    DOI: 10.1038/s41467-022-35711-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35711-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35711-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan Mattsson & Hans M. Wyss & Alberto Fernandez-Nieves & Kunimasa Miyazaki & Zhibing Hu & David R. Reichman & David A. Weitz, 2009. "Soft colloids make strong glasses," Nature, Nature, vol. 462(7269), pages 83-86, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levashov, V.A. & Ryltsev, R.E. & Chtchelkatchev, N.M., 2022. "Investigation of the degree of local structural similarity between the parent-liquid and children-crystal states for a model soft matter system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35711-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.