IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35385-0.html
   My bibliography  Save this article

Bicontinuous oxide heteroepitaxy with enhanced photoconductivity

Author

Listed:
  • Pao-Wen Shao

    (National Yang Ming Chiao Tung University)

  • Yi-Xian Wu

    (National Yang Ming Chiao Tung University)

  • Wei-Han Chen

    (National Yang Ming Chiao Tung University)

  • Mojue Zhang

    (University of Wisconsin-Madison)

  • Minyi Dai

    (University of Wisconsin-Madison)

  • Yen-Chien Kuo

    (National Synchrotron Radiation Research Center)

  • Shang-Hsien Hsieh

    (National Synchrotron Radiation Research Center)

  • Yi-Cheng Tang

    (National Chung Hsing University)

  • Po-Liang Liu

    (National Chung Hsing University)

  • Pu Yu

    (Tsinghua University)

  • Yuang Chen

    (East China Normal University)

  • Rong Huang

    (East China Normal University)

  • Chia-Hao Chen

    (National Synchrotron Radiation Research Center)

  • Ju-Hung Hsu

    (Integrated Service Technology)

  • Yi-Chun Chen

    (National Cheng Kung University)

  • Jia-Mian Hu

    (University of Wisconsin-Madison)

  • Ying-Hao Chu

    (National Yang Ming Chiao Tung University
    National Tsing Hua University)

Abstract

Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO2) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO2:NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO2:NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.

Suggested Citation

  • Pao-Wen Shao & Yi-Xian Wu & Wei-Han Chen & Mojue Zhang & Minyi Dai & Yen-Chien Kuo & Shang-Hsien Hsieh & Yi-Cheng Tang & Po-Liang Liu & Pu Yu & Yuang Chen & Rong Huang & Chia-Hao Chen & Ju-Hung Hsu & , 2023. "Bicontinuous oxide heteroepitaxy with enhanced photoconductivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35385-0
    DOI: 10.1038/s41467-022-35385-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35385-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35385-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonah Erlebacher & Michael J. Aziz & Alain Karma & Nikolay Dimitrov & Karl Sieradzki, 2001. "Evolution of nanoporosity in dealloying," Nature, Nature, vol. 410(6827), pages 450-453, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dae Jong You & Do-Hyung Kim & Ji Man Kim & Chanho Pak, 2019. "Preparation of Nanoporous PdIrZn Alloy Catalyst by Dissolving Excess ZnO for Cathode of High- Temperature Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 12(21), pages 1-11, October.
    2. Ruirui Song & Jiuhui Han & Masayuki Okugawa & Rodion Belosludov & Takeshi Wada & Jing Jiang & Daixiu Wei & Akira Kudo & Yuan Tian & Mingwei Chen & Hidemi Kato, 2022. "Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Longhai Lai & Bernard Gaskey & Alyssa Chuang & Jonah Erlebacher & Alain Karma, 2022. "Topological control of liquid-metal-dealloyed structures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35385-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.