IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35520-x.html
   My bibliography  Save this article

Reply to: A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis

Author

Listed:
  • Kip D. Zimmerman

    (Wake Forest School of Medicine)

  • Ciaran Evans

    (Wake Forest University)

  • Carl D. Langefeld

    (Wake Forest School of Medicine)

Abstract

No abstract is available for this item.

Suggested Citation

  • Kip D. Zimmerman & Ciaran Evans & Carl D. Langefeld, 2022. "Reply to: A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis," Nature Communications, Nature, vol. 13(1), pages 1-2, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35520-x
    DOI: 10.1038/s41467-022-35520-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35520-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35520-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kip D. Zimmerman & Mark A. Espeland & Carl D. Langefeld, 2021. "A practical solution to pseudoreplication bias in single-cell studies," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Alan E. Murphy & Nathan G. Skene, 2022. "A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian-Yue Zhang & Xiao-Ping Ye & Zheng Zhou & Chen-Fang Zhu & Rui Li & Ya Fang & Rui-Jia Zhang & Lu Li & Wei Liu & Zheng Wang & Shi-Yang Song & Sang-Yu Lu & Shuang-Xia Zhao & Jian-Nan Lin & Huai-Dong S, 2022. "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Suhas V. Vasaikar & Adam K. Savage & Qiuyu Gong & Elliott Swanson & Aarthi Talla & Cara Lord & Alexander T. Heubeck & Julian Reading & Lucas T. Graybuck & Paul Meijer & Troy R. Torgerson & Peter J. Sk, 2023. "A comprehensive platform for analyzing longitudinal multi-omics data," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Logan Brase & Shih-Feng You & Ricardo D’Oliveira Albanus & Jorge L. Del-Aguila & Yaoyi Dai & Brenna C. Novotny & Carolina Soriano-Tarraga & Taitea Dykstra & Maria Victoria Fernandez & John P. Budde & , 2023. "Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Alan E. Murphy & Nathan G. Skene, 2022. "A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    5. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Irene H. Flønes & Lilah Toker & Dagny Ann Sandnes & Martina Castelli & Sepideh Mostafavi & Njål Lura & Omnia Shadad & Erika Fernandez-Vizarra & Cèlia Painous & Alexandra Pérez-Soriano & Yaroslau Compt, 2024. "Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Caitriona M. McEvoy & Julia M. Murphy & Lin Zhang & Sergi Clotet-Freixas & Jessica A. Mathews & James An & Mehran Karimzadeh & Delaram Pouyabahar & Shenghui Su & Olga Zaslaver & Hannes Röst & Rangi Ar, 2022. "Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Stergios Tsartsalis & Hannah Sleven & Nurun Fancy & Frank Wessely & Amy M. Smith & Nanet Willumsen & To Ka Dorcas Cheung & Michal J. Rokicki & Vicky Chau & Eseoghene Ifie & Combiz Khozoie & Olaf Ansor, 2024. "A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35520-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.