IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35256-8.html
   My bibliography  Save this article

Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation

Author

Listed:
  • Xian Zhang

    (Hefei University of Technology
    Brigham and Women’s Hospital and Harvard Medical School)

  • Songyuan Luo

    (Brigham and Women’s Hospital and Harvard Medical School
    Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences)

  • Minjie Wang

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Qiongqiong Cao

    (Hefei University of Technology)

  • Zhixin Zhang

    (Hefei University of Technology)

  • Qin Huang

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Jie Li

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Zhiyong Deng

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Tianxiao Liu

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Cong-Lin Liu

    (Brigham and Women’s Hospital and Harvard Medical School
    Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province)

  • Mathilde Meppen

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Amelie Vromman

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Richard A. Flavell

    (Yale School of Medicine)

  • Gökhan S. Hotamışlıgil

    (Harvard School of Public Health)

  • Jian Liu

    (Hefei University of Technology)

  • Peter Libby

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Zhangsuo Liu

    (Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province)

  • Guo-Ping Shi

    (Brigham and Women’s Hospital and Harvard Medical School)

Abstract

White adipose tissue (WAT) plays a role in storing energy, while brown adipose tissue (BAT) is instrumental in the re-distribution of stored energy when dietary sources are unavailable. Interleukin-18 (IL18) is a cytokine playing a role in T-cell polarization, but also for regulating energy homeostasis via the dimeric IL18 receptor (IL18r) and Na-Cl co-transporter (NCC) on adipocytes. Here we show that IL18 signaling in metabolism is regulated at the level of receptor utilization, with preferential role for NCC in brown adipose tissue (BAT) and dominantly via IL18r in WAT. In Il18r−/−Ncc−/− mice, high-fat diet (HFD) causes more prominent body weight gain and insulin resistance than in wild-type mice. The WAT insulin resistance phenotype of the double-knockout mice is recapitulated in HFD-fed Il18r−/− mice, whereas decreased thermogenesis in BAT upon HFD is dependent on NCC deletion. BAT-selective depletion of either NCC or IL18 reduces thermogenesis and increases BAT and WAT inflammation. IL18r deletion in WAT reduces insulin signaling and increases WAT inflammation. In summary, our study contributes to the mechanistic understanding of IL18 regulation of energy metabolism and shows clearly discernible roles for its two receptors in brown and white adipose tissues.

Suggested Citation

  • Xian Zhang & Songyuan Luo & Minjie Wang & Qiongqiong Cao & Zhixin Zhang & Qin Huang & Jie Li & Zhiyong Deng & Tianxiao Liu & Cong-Lin Liu & Mathilde Meppen & Amelie Vromman & Richard A. Flavell & Gökh, 2022. "Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35256-8
    DOI: 10.1038/s41467-022-35256-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35256-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35256-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khoa D. Nguyen & Yifu Qiu & Xiaojin Cui & Y. P. Sharon Goh & Julia Mwangi & Tovo David & Lata Mukundan & Frank Brombacher & Richard M. Locksley & Ajay Chawla, 2011. "Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis," Nature, Nature, vol. 480(7375), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natasha M Girgis & Uma Mahesh Gundra & Lauren N Ward & Mynthia Cabrera & Ute Frevert & P'ng Loke, 2014. "Ly6Chigh Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells," PLOS Pathogens, Public Library of Science, vol. 10(6), pages 1-13, June.
    2. Suyang Wu & Chen Qiu & Jiahao Ni & Wenli Guo & Jiyuan Song & Xingyin Yang & Yulin Sun & Yanjun Chen & Yunxia Zhu & Xiaoai Chang & Peng Sun & Chunxia Wang & Kai Li & Xiao Han, 2024. "M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Jing Yan & Yuemei Zhang & Hairong Yu & Yicen Zong & Daixi Wang & Jiangfei Zheng & Li Jin & Xiangtian Yu & Caizhi Liu & Yi Zhang & Feng Jiang & Rong Zhang & Xiangnan Fang & Ting Xu & Mingyu Li & Jianzh, 2022. "GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    4. Prameladevi Chinnasamy & Isabel Casimiro & Dario F. Riascos-Bernal & Shreeganesh Venkatesh & Dippal Parikh & Alishba Maira & Aparna Srinivasan & Wei Zheng & Elena Tarabra & Haihong Zong & Smitha Jayak, 2023. "Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Shaojian Lin & Anke Zhang & Ling Yuan & Yufan Wang & Chuan Zhang & Junkun Jiang & Houshi Xu & Huiwen Yuan & Hui Yao & Qianying Zhang & Yong Zhang & Meiqing Lou & Ping Wang & Zhen-Ning Zhang & Bing Lua, 2022. "Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35256-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.