IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35230-4.html
   My bibliography  Save this article

ERK-mediated NELF-A phosphorylation promotes transcription elongation of immediate-early genes by releasing promoter-proximal pausing of RNA polymerase II

Author

Listed:
  • Seina Ohe

    (The University of Tokyo
    The University of Tokyo)

  • Yuji Kubota

    (The University of Tokyo)

  • Kiyoshi Yamaguchi

    (The University of Tokyo)

  • Yusuke Takagi

    (The University of Tokyo)

  • Junichiro Nashimoto

    (The University of Tokyo)

  • Hiroko Kozuka-Hata

    (The University of Tokyo)

  • Masaaki Oyama

    (The University of Tokyo)

  • Yoichi Furukawa

    (The University of Tokyo)

  • Mutsuhiro Takekawa

    (The University of Tokyo
    The University of Tokyo
    The University of Tokyo)

Abstract

Growth factor-induced, ERK-mediated induction of immediate-early genes (IEGs) is crucial for cell growth and tumorigenesis. Although IEG expression is mainly regulated at the level of transcription elongation by RNA polymerase-II (Pol-II) promoter-proximal pausing and its release, the role of ERK in this process remains unknown. Here, we identified negative elongation factor (NELF)-A as an ERK substrate. Upon growth factor stimulation, ERK phosphorylates NELF-A, which dissociates NELF from paused Pol-II at the promoter-proximal regions of IEGs, allowing Pol-II to resume elongation and produce full-length transcripts. Furthermore, we found that in cancer cells, PP2A efficiently dephosphorylates NELF-A, thereby preventing aberrant IEG expression induced by ERK-activating oncogenes. However, when PP2A inhibitor proteins are overexpressed, as is frequently observed in cancers, decreased PP2A activity combined with oncogene-mediated ERK activation conspire to induce NELF-A phosphorylation and IEG upregulation, resulting in tumor progression. Our data delineate previously unexplored roles of ERK and PP2A inhibitor proteins in carcinogenesis.

Suggested Citation

  • Seina Ohe & Yuji Kubota & Kiyoshi Yamaguchi & Yusuke Takagi & Junichiro Nashimoto & Hiroko Kozuka-Hata & Masaaki Oyama & Yoichi Furukawa & Mutsuhiro Takekawa, 2022. "ERK-mediated NELF-A phosphorylation promotes transcription elongation of immediate-early genes by releasing promoter-proximal pausing of RNA polymerase II," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35230-4
    DOI: 10.1038/s41467-022-35230-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35230-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35230-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seychelle M. Vos & Lucas Farnung & Henning Urlaub & Patrick Cramer, 2018. "Structure of paused transcription complex Pol II–DSIF–NELF," Nature, Nature, vol. 560(7720), pages 601-606, August.
    2. Seychelle M. Vos & Lucas Farnung & Marc Boehning & Christoph Wigge & Andreas Linden & Henning Urlaub & Patrick Cramer, 2018. "Structure of activated transcription complex Pol II–DSIF–PAF–SPT6," Nature, Nature, vol. 560(7720), pages 607-612, August.
    3. Li Yu & Bin Zhang & Dinesh Deochand & Maria A. Sacta & Maddalena Coppo & Yingli Shang & Ziyi Guo & Xiaomin Zeng & David A. Rollins & Bowranigan Tharmalingam & Rong Li & Yurii Chinenov & Inez Rogatsky , 2020. "Negative elongation factor complex enables macrophage inflammatory responses by controlling anti-inflammatory gene expression," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Marina E. Borisova & Andrea Voigt & Maxim A. X. Tollenaere & Sanjeeb Kumar Sahu & Thomas Juretschke & Nastasja Kreim & Niels Mailand & Chunaram Choudhary & Simon Bekker-Jensen & Masato Akutsu & Sebast, 2018. "p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Li & Qianmin Wang & Yanhui Xu & Ze Li, 2024. "Structures of co-transcriptional RNA capping enzymes on paused transcription complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Roberto Bandiera & Rebecca E. Wagner & Thiago Britto-Borges & Christoph Dieterich & Sabine Dietmann & Susanne Bornelöv & Michaela Frye, 2021. "RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Jieqiong Zhang & Zhenhua Hu & Hwa Hwa Chung & Yun Tian & Kah Weng Lau & Zheng Ser & Yan Ting Lim & Radoslaw M. Sobota & Hwei Fen Leong & Benjamin Jieming Chen & Clarisse Jingyi Yeo & Shawn Ying Xuan T, 2023. "Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Michael DeBerardine & Gregory T. Booth & Philip P. Versluis & John T. Lis, 2023. "The NELF pausing checkpoint mediates the functional divergence of Cdk9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Abdallah Gaballa & Anneli Gebhardt-Wolf & Bastian Krenz & Greta Mattavelli & Mara John & Giacomo Cossa & Silvia Andreani & Christina Schülein-Völk & Francisco Montesinos & Raphael Vidal & Carolin Kast, 2024. "PAF1c links S-phase progression to immune evasion and MYC function in pancreatic carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Heeyoun Bunch & Deukyeong Kim & Masahiro Naganuma & Reiko Nakagawa & Anh Cong & Jaehyeon Jeong & Haruhiko Ehara & Hongha Vu & Jeong Ho Chang & Matthew J. Schellenberg & Shun-ichi Sekine, 2023. "ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Wojciech Barczak & Simon M. Carr & Geng Liu & Shonagh Munro & Annalisa Nicastri & Lian Ni Lee & Claire Hutchings & Nicola Ternette & Paul Klenerman & Alexander Kanapin & Anastasia Samsonova & Nicholas, 2023. "Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Rina Hirano & Haruhiko Ehara & Tomoya Kujirai & Tamami Uejima & Yoshimasa Takizawa & Shun-ichi Sekine & Hitoshi Kurumizaka, 2022. "Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tatsuo Yanagisawa & Yuko Murayama & Haruhiko Ehara & Mie Goto & Mari Aoki & Shun-ichi Sekine, 2024. "Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yujuan Liu & Jie Shu & Zhi Zhang & Ning Ding & Jinyuan Liu & Jun Liu & Yuhai Cui & Changhu Wang & Chen Chen, 2024. "A conserved Pol II elongator SPT6L mediates Pol V transcription to regulate RNA-directed DNA methylation in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Barbara Steurer & Roel C. Janssens & Marit E. Geijer & Fernando Aprile-Garcia & Bart Geverts & Arjan F. Theil & Barbara Hummel & Martin E. Royen & Bastiaan Evers & René Bernards & Adriaan B. Houtsmull, 2022. "DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Simona Pilotto & Michal Sýkora & Gwenny Cackett & Christopher Dulson & Finn Werner, 2024. "Structure of the recombinant RNA polymerase from African Swine Fever Virus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Ines H. Kaltheuner & Kanchan Anand & Jonas Moecking & Robert Düster & Jinhua Wang & Nathanael S. Gray & Matthias Geyer, 2021. "Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    14. Emily G. Kaye & Kavyashree Basavaraju & Geoffrey M. Nelson & Helena D. Zomer & Debarun Roy & Irene Infancy Joseph & Reza Rajabi-Toustani & Huanyu Qiao & Karen Adelman & Prabhakara P. Reddi, 2024. "RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Anniina Vihervaara & Philip Versluis & Samu V. Himanen & John T. Lis, 2023. "PRO-IP-seq tracks molecular modifications of engaged Pol II complexes at nucleotide resolution," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Lisa-Marie Appel & Vedran Franke & Melania Bruno & Irina Grishkovskaya & Aiste Kasiliauskaite & Tanja Kaufmann & Ursula E. Schoeberl & Martin G. Puchinger & Sebastian Kostrhon & Carmen Ebenwaldner & M, 2021. "PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    17. Vladyslava Gorbovytska & Seung-Kyoon Kim & Filiz Kuybu & Michael Götze & Dahun Um & Keunsoo Kang & Andreas Pittroff & Theresia Brennecke & Lisa-Marie Schneider & Alexander Leitner & Tae-Kyung Kim & Cl, 2022. "Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    18. Annkatrin Bressin & Olga Jasnovidova & Mirjam Arnold & Elisabeth Altendorfer & Filip Trajkovski & Thomas A. Kratz & Joanna E. Handzlik & Denes Hnisz & Andreas Mayer, 2023. "High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35230-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.