IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35228-y.html
   My bibliography  Save this article

A growth selection system for the directed evolution of amine-forming or converting enzymes

Author

Listed:
  • Shuke Wu

    (University of Greifswald
    Huazhong Agricultural University)

  • Chao Xiang

    (University of Greifswald)

  • Yi Zhou

    (Huazhong Agricultural University)

  • Mohammad Saiful Hasan Khan

    (University of Greifswald)

  • Weidong Liu

    (University of Greifswald
    Chinese Academy of Sciences)

  • Christian G. Feiler

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Ren Wei

    (University of Greifswald)

  • Gert Weber

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Matthias Höhne

    (University of Greifswald)

  • Uwe T. Bornscheuer

    (University of Greifswald)

Abstract

Fast screening of enzyme variants is crucial for tailoring biocatalysts for the asymmetric synthesis of non-natural chiral chemicals, such as amines. However, most existing screening methods either are limited by the throughput or require specialized equipment. Herein, we report a simple, high-throughput, low-equipment dependent, and generally applicable growth selection system for engineering amine-forming or converting enzymes and apply it to improve biocatalysts belonging to three different enzyme classes. This results in (i) an amine transaminase variant with 110-fold increased specific activity for the asymmetric synthesis of the chiral amine intermediate of Linagliptin; (ii) a 270-fold improved monoamine oxidase to prepare the chiral amine intermediate of Cinacalcet by deracemization; and (iii) an ammonia lyase variant with a 26-fold increased activity in the asymmetric synthesis of a non-natural amino acid. Our growth selection system is adaptable to different enzyme classes, varying levels of enzyme activities, and thus a flexible tool for various stages of an engineering campaign.

Suggested Citation

  • Shuke Wu & Chao Xiang & Yi Zhou & Mohammad Saiful Hasan Khan & Weidong Liu & Christian G. Feiler & Ren Wei & Gert Weber & Matthias Höhne & Uwe T. Bornscheuer, 2022. "A growth selection system for the directed evolution of amine-forming or converting enzymes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35228-y
    DOI: 10.1038/s41467-022-35228-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35228-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35228-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lara Sellés Vidal & James W. Murray & John T. Heap, 2021. "Versatile selective evolutionary pressure using synthetic defect in universal metabolism," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Kevin M. Esvelt & Jacob C. Carlson & David R. Liu, 2011. "A system for the continuous directed evolution of biomolecules," Nature, Nature, vol. 472(7344), pages 499-503, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Lara Sellés Vidal & James W. Murray & John T. Heap, 2021. "Versatile selective evolutionary pressure using synthetic defect in universal metabolism," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Stefan A Hoffmann & Christian Wohltat & Kristian M Müller & Katja M Arndt, 2017. "A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
    6. Linyue Zhang & Edward King & William B. Black & Christian M. Heckmann & Allison Wolder & Youtian Cui & Francis Nicklen & Justin B. Siegel & Ray Luo & Caroline E. Paul & Han Li, 2022. "Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Edward King & Sarah Maxel & Yulai Zhang & Karissa C. Kenney & Youtian Cui & Emma Luu & Justin B. Siegel & Gregory A. Weiss & Ray Luo & Han Li, 2022. "Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Mary S. Morrison & Tina Wang & Aditya Raguram & Colin Hemez & David R. Liu, 2021. "Disulfide-compatible phage-assisted continuous evolution in the periplasmic space," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Yanik Weber & Desirée Böck & Anastasia Ivașcu & Nicolas Mathis & Tanja Rothgangl & Eleonora I. Ioannidi & Alex C. Blaudt & Lisa Tidecks & Máté Vadovics & Hiromi Muramatsu & Andreas Reichmuth & Kim F. , 2024. "Enhancing prime editor activity by directed protein evolution in yeast," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35228-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.