IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34923-0.html
   My bibliography  Save this article

Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus

Author

Listed:
  • Ian A. Durie

    (University of Georgia)

  • Zahra R. Tehrani

    (University of Maryland School of Medicine)

  • Elif Karaaslan

    (Centers for Disease Control and Prevention
    University of California Riverside)

  • Teresa E. Sorvillo

    (Centers for Disease Control and Prevention)

  • Jack McGuire

    (University of California Riverside)

  • Joseph W. Golden

    (United States Army Medical Research Institute of Infectious Diseases)

  • Stephen R. Welch

    (Centers for Disease Control and Prevention)

  • Markus H. Kainulainen

    (Centers for Disease Control and Prevention)

  • Jessica R. Harmon

    (Centers for Disease Control and Prevention)

  • Jarrod J. Mousa

    (University of Georgia College of Veterinary Medicine
    University of Georgia College of Veterinary Medicine)

  • David Gonzalez

    (University of California Riverside)

  • Suzanne Enos

    (University of Georgia)

  • Iftihar Koksal

    (Acibadem University Atakent Hospital)

  • Gurdal Yilmaz

    (Karadeniz Technical University School of Medicine)

  • Hanife Nur Karakoc

    (Bitlis State Hospital)

  • Sanaz Hamidi

    (Karadeniz Technical University School of Medicine)

  • Cansu Albay

    (Karadeniz Technical University School of Medicine)

  • Jessica R. Spengler

    (Centers for Disease Control and Prevention)

  • Christina F. Spiropoulou

    (Centers for Disease Control and Prevention)

  • Aura R. Garrison

    (United States Army Medical Research Institute of Infectious Diseases)

  • Mohammad M. Sajadi

    (University of Maryland School of Medicine)

  • Éric Bergeron

    (University of Georgia
    Centers for Disease Control and Prevention)

  • Scott D. Pegan

    (University of California Riverside
    United States Military Academy)

Abstract

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.

Suggested Citation

  • Ian A. Durie & Zahra R. Tehrani & Elif Karaaslan & Teresa E. Sorvillo & Jack McGuire & Joseph W. Golden & Stephen R. Welch & Markus H. Kainulainen & Jessica R. Harmon & Jarrod J. Mousa & David Gonzale, 2022. "Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34923-0
    DOI: 10.1038/s41467-022-34923-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34923-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34923-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher O. Barnes & Claudia A. Jette & Morgan E. Abernathy & Kim-Marie A. Dam & Shannon R. Esswein & Harry B. Gristick & Andrey G. Malyutin & Naima G. Sharaf & Kathryn E. Huey-Tubman & Yu E. Lee &, 2020. "SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies," Nature, Nature, vol. 588(7839), pages 682-687, December.
    2. Bruno E. Correia & John T. Bates & Rebecca J. Loomis & Gretchen Baneyx & Chris Carrico & Joseph G. Jardine & Peter Rupert & Colin Correnti & Oleksandr Kalyuzhniy & Vinayak Vittal & Mary J. Connell & E, 2014. "Proof of principle for epitope-focused vaccine design," Nature, Nature, vol. 507(7491), pages 201-206, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aura R. Garrison & Vanessa Moresco & Xiankun Zeng & Curtis R. Cline & Michael D. Ward & Keersten M. Ricks & Scott P. Olschner & Lisa H. Cazares & Elif Karaaslan & Collin J. Fitzpatrick & Éric Bergeron, 2024. "Nucleocapsid protein-specific monoclonal antibodies protect mice against Crimean-Congo hemorrhagic fever virus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiqiang Ku & Xuping Xie & Jianqing Lin & Peng Gao & Bin Wu & Abbas El Sahili & Hang Su & Yang Liu & Xiaohua Ye & Eddie Yongjun Tan & Xin Li & Xuejun Fan & Boon Chong Goh & Wei Xiong & Hannah Boyd & A, 2022. "Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Haisheng Yu & Banghui Liu & Yudi Zhang & Xijie Gao & Qian Wang & Haitao Xiang & Xiaofang Peng & Caixia Xie & Yaping Wang & Peiyu Hu & Jingrong Shi & Quan Shi & Pingqian Zheng & Chengqian Feng & Guofan, 2023. "Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected patients cross-neutralize heterologous variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Seoryeong Park & Jaewon Choi & Yonghee Lee & Jinsung Noh & Namphil Kim & JinAh Lee & Geummi Cho & Sujeong Kim & Duck Kyun Yoo & Chang Kyung Kang & Pyoeng Gyun Choe & Nam Joong Kim & Wan Beom Park & Se, 2024. "An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by hypermutation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Susan K. Vester & Rolle Rahikainen & Irsyad N. A. Khairil Anuar & Rory A. Hills & Tiong Kit Tan & Mark Howarth, 2022. "SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Biao Zhou & Runhong Zhou & Bingjie Tang & Jasper Fuk-Woo Chan & Mengxiao Luo & Qiaoli Peng & Shuofeng Yuan & Hang Liu & Bobo Wing-Yee Mok & Bohao Chen & Pui Wang & Vincent Kwok-Man Poon & Hin Chu & Ch, 2022. "A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Namrata Anand & Raphael Eguchi & Irimpan I. Mathews & Carla P. Perez & Alexander Derry & Russ B. Altman & Po-Ssu Huang, 2022. "Protein sequence design with a learned potential," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Leire Campos-Mata & Benjamin Trinité & Andrea Modrego & Sonia Tejedor Vaquero & Edwards Pradenas & Anna Pons-Grífols & Natalia Rodrigo Melero & Diego Carlero & Silvia Marfil & César Santiago & Dàlia R, 2024. "A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Emanuele Andreano & Ida Paciello & Silvia Marchese & Lorena Donnici & Giulio Pierleoni & Giulia Piccini & Noemi Manganaro & Elisa Pantano & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevr, 2022. "Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Rajeshwer S. Sankhala & Kerri G. Lal & Jaime L. Jensen & Vincent Dussupt & Letzibeth Mendez-Rivera & Hongjun Bai & Lindsay Wieczorek & Sandra V. Mayer & Michelle Zemil & Danielle A. Wagner & Samantha , 2024. "Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. A. Brenda Kapingidza & Daniel J. Marston & Caitlin Harris & Daniel Wrapp & Kaitlyn Winters & Dieter Mielke & Lu Xiaozhi & Qi Yin & Andrew Foulger & Rob Parks & Maggie Barr & Amanda Newman & Alexandra , 2023. "Engineered immunogens to elicit antibodies against conserved coronavirus epitopes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Nina G. Bozhanova & Andrew I. Flyak & Benjamin P. Brown & Stormy E. Ruiz & Jordan Salas & Semi Rho & Robin G. Bombardi & Luke Myers & Cinque Soto & Justin R. Bailey & James E. Crowe & Pamela J. Bjorkm, 2022. "Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Wei-Hung Chen & Agnes Hajduczki & Elizabeth J. Martinez & Hongjun Bai & Hanover Matz & Thomas M. Hill & Eric Lewitus & William C. Chang & Layla Dawit & Caroline E. Peterson & Phyllis A. Rees & Adelola, 2023. "Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Davida S. Smyth & Monica Trujillo & Devon A. Gregory & Kristen Cheung & Anna Gao & Maddie Graham & Yue Guan & Caitlyn Guldenpfennig & Irene Hoxie & Sherin Kannoly & Nanami Kubota & Terri D. Lyddon & M, 2022. "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Wanbo Tai & Kai Yang & Yubin Liu & Ruofan Li & Shengyong Feng & Benjie Chai & Xinyu Zhuang & Shaolong Qi & Huicheng Shi & Zhida Liu & Jiaqi Lei & Enhao Ma & Weixiao Wang & Chongyu Tian & Ting Le & Jin, 2023. "A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Yongchuan Li & Salwa Hanim Abdul-Rashid & Raja Ariffin Raja Ghazilla, 2022. "Design Methods for the Elderly in Web of Science, Scopus, and China National Knowledge Infrastructure Databases: A Scientometric Analysis in CiteSpace," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    19. Dhiraj Mannar & James W. Saville & Chad Poloni & Xing Zhu & Alison Bezeruk & Keith Tidey & Sana Ahmed & Katharine S. Tuttle & Faezeh Vahdatihassani & Spencer Cholak & Laura Cook & Theodore S. Steiner , 2024. "Altered receptor binding, antibody evasion and retention of T cell recognition by the SARS-CoV-2 XBB.1.5 spike protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Dhiraj Mannar & James W. Saville & Zehua Sun & Xing Zhu & Michelle M. Marti & Shanti S. Srivastava & Alison M. Berezuk & Steven Zhou & Katharine S. Tuttle & Michele D. Sobolewski & Andrew Kim & Benjam, 2022. "SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34923-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.