IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34693-9.html
   My bibliography  Save this article

Extending resolution within a single imaging frame

Author

Listed:
  • Esley Torres-García

    (Universidad Autónoma del Estado de Morelos
    Universidad Nacional Autónoma de México)

  • Raúl Pinto-Cámara

    (Universidad Autónoma del Estado de Morelos
    Universidad Nacional Autónoma de México)

  • Alejandro Linares

    (Universidad Nacional Autónoma de México
    Marine Biological Laboratory)

  • Damián Martínez

    (Universidad Nacional Autónoma de México)

  • Víctor Abonza

    (Universidad Nacional Autónoma de México)

  • Eduardo Brito-Alarcón

    (Universidad Nacional Autónoma de México)

  • Carlos Calcines-Cruz

    (Universidad Nacional Autónoma de México)

  • Gustavo Valdés-Galindo

    (Instituto de Química. Universidad Nacional Autónoma de México)

  • David Torres

    (Universidad Nacional Autónoma de México)

  • Martina Jabloñski

    (Instituto de Biología y Medicina Experimental (IBYME‐CONICET))

  • Héctor H. Torres-Martínez

    (Universidad Nacional Autónoma de México)

  • José L. Martínez

    (Universidad Nacional Autónoma de México)

  • Haydee O. Hernández

    (Universidad Nacional Autónoma de México)

  • José P. Ocelotl-Oviedo

    (Universidad Nacional Autónoma de México)

  • Yasel Garcés

    (Universidad Nacional Autónoma de México
    Universidad Nacional Autónoma de México)

  • Marco Barchi

    (University of Rome Tor Vergata)

  • Rocco D’Antuono

    (Crick Advanced Light Microscopy Facility)

  • Ana Bošković

    (Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory)

  • Joseph G. Dubrovsky

    (Universidad Nacional Autónoma de México)

  • Alberto Darszon

    (Universidad Nacional Autónoma de México)

  • Mariano G. Buffone

    (Instituto de Biología y Medicina Experimental (IBYME‐CONICET))

  • Roberto Rodríguez Morales

    (Instituto de Cibernética, Matemática y Física)

  • Juan Manuel Rendon-Mancha

    (Universidad Autónoma del Estado de Morelos)

  • Christopher D. Wood

    (Universidad Nacional Autónoma de México)

  • Armando Hernández-García

    (Instituto de Química. Universidad Nacional Autónoma de México)

  • Diego Krapf

    (Colorado State University)

  • Álvaro H. Crevenna

    (Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory)

  • Adán Guerrero

    (Universidad Nacional Autónoma de México)

Abstract

The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.

Suggested Citation

  • Esley Torres-García & Raúl Pinto-Cámara & Alejandro Linares & Damián Martínez & Víctor Abonza & Eduardo Brito-Alarcón & Carlos Calcines-Cruz & Gustavo Valdés-Galindo & David Torres & Martina Jabloñski, 2022. "Extending resolution within a single imaging frame," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34693-9
    DOI: 10.1038/s41467-022-34693-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34693-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34693-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Biagio Mandracchia & Xuanwen Hua & Changliang Guo & Jeonghwan Son & Tara Urner & Shu Jia, 2020. "Fast and accurate sCMOS noise correction for fluorescence microscopy," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuanwen Hua & Keyi Han & Biagio Mandracchia & Afsane Radmand & Wenhao Liu & Hyejin Kim & Zhou Yuan & Samuel M. Ehrlich & Kaitao Li & Corey Zheng & Jeonghwan Son & Aaron D. Silva Trenkle & Gabriel A. K, 2024. "Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Robin Diekmann & Joran Deschamps & Yiming Li & Takahiro Deguchi & Aline Tschanz & Maurice Kahnwald & Ulf Matti & Jonas Ries, 2022. "Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chang Qiao & Yunmin Zeng & Quan Meng & Xingye Chen & Haoyu Chen & Tao Jiang & Rongfei Wei & Jiabao Guo & Wenfeng Fu & Huaide Lu & Di Li & Yuwang Wang & Hui Qiao & Jiamin Wu & Dong Li & Qionghai Dai, 2024. "Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34693-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.