Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-30907-2
Download full text from publisher
References listed on IDEAS
- Biagio Mandracchia & Xuanwen Hua & Changliang Guo & Jeonghwan Son & Tara Urner & Shu Jia, 2020. "Fast and accurate sCMOS noise correction for fluorescence microscopy," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chang Qiao & Yunmin Zeng & Quan Meng & Xingye Chen & Haoyu Chen & Tao Jiang & Rongfei Wei & Jiabao Guo & Wenfeng Fu & Huaide Lu & Di Li & Yuwang Wang & Hui Qiao & Jiamin Wu & Dong Li & Qionghai Dai, 2024. "Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xuanwen Hua & Keyi Han & Biagio Mandracchia & Afsane Radmand & Wenhao Liu & Hyejin Kim & Zhou Yuan & Samuel M. Ehrlich & Kaitao Li & Corey Zheng & Jeonghwan Son & Aaron D. Silva Trenkle & Gabriel A. K, 2024. "Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Esley Torres-García & Raúl Pinto-Cámara & Alejandro Linares & Damián Martínez & Víctor Abonza & Eduardo Brito-Alarcón & Carlos Calcines-Cruz & Gustavo Valdés-Galindo & David Torres & Martina Jabloñski, 2022. "Extending resolution within a single imaging frame," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
- Chang Qiao & Yunmin Zeng & Quan Meng & Xingye Chen & Haoyu Chen & Tao Jiang & Rongfei Wei & Jiabao Guo & Wenfeng Fu & Huaide Lu & Di Li & Yuwang Wang & Hui Qiao & Jiamin Wu & Dong Li & Qionghai Dai, 2024. "Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30907-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.