IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33899-1.html
   My bibliography  Save this article

Discriminating cross-reactivity in polyclonal IgG1 responses against SARS-CoV-2 variants of concern

Author

Listed:
  • Danique M. H. Rijswijck

    (University of Utrecht
    Netherlands Proteomic Center)

  • Albert Bondt

    (University of Utrecht
    Netherlands Proteomic Center)

  • Max Hoek

    (University of Utrecht
    Netherlands Proteomic Center)

  • Karlijn Straten

    (University of Amsterdam, Amsterdam Institute for Infection and Immunity
    Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Tom G. Caniels

    (University of Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Meliawati Poniman

    (University of Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Dirk Eggink

    (National Institute for Public Health and the Environment, RIVM)

  • Chantal Reusken

    (National Institute for Public Health and the Environment, RIVM)

  • Godelieve J. Bree

    (Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Rogier W. Sanders

    (University of Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Marit J. Gils

    (University of Amsterdam, Amsterdam Institute for Infection and Immunity)

  • Albert J. R. Heck

    (University of Utrecht
    Netherlands Proteomic Center)

Abstract

Existing assays to measure antibody cross-reactivity against different SARS-CoV-2 spike (S) protein variants lack the discriminatory power to provide insights at the level of individual clones. Using a mass spectrometry-based approach we are able to monitor individual donors’ IgG1 clonal responses following a SARS-CoV-2 infection. We monitor the plasma clonal IgG1 profiles of 8 donors who had experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we chart the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer VOC antigens. The plasma of each donor contains numerous anti-spike IgG1 antibodies, accounting for

Suggested Citation

  • Danique M. H. Rijswijck & Albert Bondt & Max Hoek & Karlijn Straten & Tom G. Caniels & Meliawati Poniman & Dirk Eggink & Chantal Reusken & Godelieve J. Bree & Rogier W. Sanders & Marit J. Gils & Alber, 2022. "Discriminating cross-reactivity in polyclonal IgG1 responses against SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33899-1
    DOI: 10.1038/s41467-022-33899-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33899-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33899-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michiel Waterbeemd & Sem Tamara & Kyle L. Fort & Eugen Damoc & Vojtech Franc & Philipp Bieri & Martin Itten & Alexander Makarov & Nenad Ban & Albert J. R. Heck, 2018. "Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Bin Ju & Qi Zhang & Jiwan Ge & Ruoke Wang & Jing Sun & Xiangyang Ge & Jiazhen Yu & Sisi Shan & Bing Zhou & Shuo Song & Xian Tang & Jinfang Yu & Jun Lan & Jing Yuan & Haiyan Wang & Juanjuan Zhao & Shuy, 2020. "Human neutralizing antibodies elicited by SARS-CoV-2 infection," Nature, Nature, vol. 584(7819), pages 115-119, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Ju & Qing Fan & Miao Wang & Xuejiao Liao & Huimin Guo & Haiyan Wang & Xiangyang Ge & Lei Liu & Zheng Zhang, 2022. "Antigenic sin of wild-type SARS-CoV-2 vaccine shapes poor cross-neutralization of BA.4/5/2.75 subvariants in BA.2 breakthrough infections," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Naomi R. Genuth & Zhen Shi & Koshi Kunimoto & Victoria Hung & Adele F. Xu & Craig H. Kerr & Gerald C. Tiu & Juan A. Oses-Prieto & Rachel E. A. Salomon-Shulman & Jeffrey D. Axelrod & Alma L. Burlingame, 2022. "A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Yanqun Wang & An Yan & Deyong Song & Maoqin Duan & Chuangchuang Dong & Jiantao Chen & Zihe Jiang & Yuanzhu Gao & Muding Rao & Jianxia Feng & Zhaoyong Zhang & Ruxi Qi & Xiaomin Ma & Hong Liu & Beibei Y, 2024. "Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tomohiro Takano & Takashi Sato & Ryutaro Kotaki & Saya Moriyama & Shuetsu Fukushi & Masahiro Shinoda & Kiyomi Kabasawa & Nagashige Shimada & Mio Kousaka & Yu Adachi & Taishi Onodera & Kazutaka Terahar, 2023. "Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Caitlin I. Stoddard & Kevin Sung & Zak A. Yaffe & Haidyn Weight & Guillaume Beaudoin-Bussières & Jared Galloway & Soren Gantt & Judith Adhiambo & Emily R. Begnel & Ednah Ojee & Jennifer Slyker & Dalto, 2023. "Elevated binding and functional antibody responses to SARS-CoV-2 in infants versus mothers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Mendoza, Daniel E. & Ochoa-Sánchez, Ana & Samaniego, Esteban P., 2022. "Forecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: The SARS-CoV-2 virus spread case," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Andrew C. Hunt & Bastian Vögeli & Ahmed O. Hassan & Laura Guerrero & Weston Kightlinger & Danielle J. Yoesep & Antje Krüger & Madison DeWinter & Michael S. Diamond & Ashty S. Karim & Michael C. Jewett, 2023. "A rapid cell-free expression and screening platform for antibody discovery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Oscar Guzmán-Martínez & Kathia Guardado & Miguel Varela-Cardoso & Alejandro Trujillo-Rivera & Iván Gómez-Ñañez & María Cristina Ortiz-León & Rafaela Espinosa & Celso Ramos & Julio Isael Pérez-Carreón , 2021. "Potential Protection of Pre-Existent Antibodies to Human Coronavirus 229E on COVID-19 Severity," IJERPH, MDPI, vol. 18(17), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33899-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.