IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33554-9.html
   My bibliography  Save this article

Energy landscape reshaped by strain-specific mutations underlies epistasis in NS1 evolution of influenza A virus

Author

Listed:
  • Iktae Kim

    (Texas A&M University)

  • Alyssa Dubrow

    (Texas A&M University)

  • Bryan Zuniga

    (Texas A&M University)

  • Baoyu Zhao

    (Texas A&M University)

  • Noah Sherer

    (Texas A&M University)

  • Abhishek Bastiray

    (Texas A&M University)

  • Pingwei Li

    (Texas A&M University)

  • Jae-Hyun Cho

    (Texas A&M University)

Abstract

Elucidating how individual mutations affect the protein energy landscape is crucial for understanding how proteins evolve. However, predicting mutational effects remains challenging because of epistasis—the nonadditive interactions between mutations. Here, we investigate the biophysical mechanism of strain-specific epistasis in the nonstructural protein 1 (NS1) of influenza A viruses (IAVs). We integrate structural, kinetic, thermodynamic, and conformational dynamics analyses of four NS1s of influenza strains that emerged between 1918 and 2004. Although functionally near-neutral, strain-specific NS1 mutations exhibit long-range epistatic interactions with residues at the p85β-binding interface. We reveal that strain-specific mutations reshaped the NS1 energy landscape during evolution. Using NMR spin dynamics, we find that the strain-specific mutations altered the conformational dynamics of the hidden network of tightly packed residues, underlying the evolution of long-range epistasis. This work shows how near-neutral mutations silently alter the biophysical energy landscapes, resulting in diverse background effects during molecular evolution.

Suggested Citation

  • Iktae Kim & Alyssa Dubrow & Bryan Zuniga & Baoyu Zhao & Noah Sherer & Abhishek Bastiray & Pingwei Li & Jae-Hyun Cho, 2022. "Energy landscape reshaped by strain-specific mutations underlies epistasis in NS1 evolution of influenza A virus," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33554-9
    DOI: 10.1038/s41467-022-33554-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33554-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33554-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael S. Breen & Carsten Kemena & Peter K. Vlasov & Cedric Notredame & Fyodor A. Kondrashov, 2012. "Epistasis as the primary factor in molecular evolution," Nature, Nature, vol. 490(7421), pages 535-538, October.
    2. Renee Otten & Lin Liu & Lillian R. Kenner & Michael W. Clarkson & David Mavor & Dan S. Tawfik & Dorothee Kern & James S. Fraser, 2018. "Rescue of conformational dynamics in enzyme catalysis by directed evolution," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Carlos G. Acevedo-Rocha & Aitao Li & Lorenzo D’Amore & Sabrina Hoebenreich & Joaquin Sanchis & Paul Lubrano & Matteo P. Ferla & Marc Garcia-Borràs & Sílvia Osuna & Manfred T. Reetz, 2021. "Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Florence Bitbol & David J Schwab, 2014. "Quantifying the Role of Population Subdivision in Evolution on Rugged Fitness Landscapes," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-15, August.
    2. Zachary R Sailer & Sarah H Shafik & Robert L Summers & Alex Joule & Alice Patterson-Robert & Rowena E Martin & Michael J Harms, 2020. "Inferring a complete genotype-phenotype map from a small number of measured phenotypes," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-27, September.
    3. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Lucile Vigué & Giancarlo Croce & Marie Petitjean & Etienne Ruppé & Olivier Tenaillon & Martin Weigt, 2022. "Deciphering polymorphism in 61,157 Escherichia coli genomes via epistatic sequence landscapes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yasmine S. Zubi & Kosuke Seki & Ying Li & Andrew C. Hunt & Bingqing Liu & Benoît Roux & Michael C. Jewett & Jared C. Lewis, 2022. "Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Federica Luppino & Ivan A. Adzhubei & Christopher A. Cassa & Agnes Toth-Petroczy, 2023. "DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Xin-Xin Zhu & Wen-Qing Zheng & Zi-Wei Xia & Xin-Ru Chen & Tian Jin & Xu-Wei Ding & Fei-Fei Chen & Qi Chen & Jian-He Xu & Xu-Dong Kong & Gao-Wei Zheng, 2024. "Evolutionary insights into the stereoselectivity of imine reductases based on ancestral sequence reconstruction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Christos S. Karamitros & Kyle Murray & Yoichi Kumada & Kenneth A. Johnson & Sheena D’Arcy & George Georgiou, 2024. "Mechanistic conformational and substrate selectivity profiles emerging in the evolution of enzymes via parallel trajectories," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33554-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.