IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33250-8.html
   My bibliography  Save this article

Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene

Author

Listed:
  • Xiaohu Ge

    (East China University of Science and Technology)

  • Mingying Dou

    (East China University of Science and Technology)

  • Yueqiang Cao

    (East China University of Science and Technology)

  • Xi Liu

    (Shanghai Jiao Tong University)

  • Qiang Yuwen

    (East China University of Science and Technology)

  • Jing Zhang

    (East China University of Science and Technology)

  • Gang Qian

    (East China University of Science and Technology)

  • Xueqing Gong

    (East China University of Science and Technology)

  • Xinggui Zhou

    (East China University of Science and Technology)

  • Liwei Chen

    (Shanghai Jiao Tong University)

  • Weikang Yuan

    (East China University of Science and Technology)

  • Xuezhi Duan

    (East China University of Science and Technology)

Abstract

Mechanism driven catalyst design with atomically uniform ensemble sites is an important yet challenging issue in heterogeneous catalysis associated with breaking the activity-selectivity trade-off. Herein, a trimer Ni1Sb2 site in NiSb intermetallic featuring superior selectivity is elaborated for acetylene semi-hydrogenation via a theoretical guidance with a precise synthesis strategy. The trimer Ni1Sb2 site in NiSb intermetallic is predicted to endow acetylene reactant with an adequately but not excessively strong σ-adsorption mode while ethylene product with a weak π-adsorption one, where such compromise delivers higher ethylene formation rate. An in-situ trapping of molten Sb by Ni strategy is developed to realize the construction of Ni1Sb2 site in the intermetallic P63/mmc NiSb catalysts. Such catalyst exhibits ethylene selectivity up to 93.2% at 100% of acetylene conversion, significantly prevailing over the referred Ni catalyst. These insights shed new lights on rational catalyst design by taming active sites to energetically match targeted reaction pathway.

Suggested Citation

  • Xiaohu Ge & Mingying Dou & Yueqiang Cao & Xi Liu & Qiang Yuwen & Jing Zhang & Gang Qian & Xueqing Gong & Xinggui Zhou & Liwei Chen & Weikang Yuan & Xuezhi Duan, 2022. "Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33250-8
    DOI: 10.1038/s41467-022-33250-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33250-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33250-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fei Huang & Yuchen Deng & Yunlei Chen & Xiangbin Cai & Mi Peng & Zhimin Jia & Jinglin Xie & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Hongyang Liu & Ding Ma, 2019. "Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Aijuan Han & Jian Zhang & Wenming Sun & Wenxing Chen & Shaolong Zhang & Yunhu Han & Quanchen Feng & Lirong Zheng & Lin Gu & Chen Chen & Qing Peng & Dingsheng Wang & Yadong Li, 2019. "Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Dawei Yao & Yue Wang & Ying Li & Antai Li & Ziheng Zhen & Jing Lv & Fanfei Sun & Ruoou Yang & Jun Luo & Zheng Jiang & Yong Wang & Xinbin Ma, 2023. "Scalable synthesis of Cu clusters for remarkable selectivity control of intermediates in consecutive hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Zhibo Liu & Fei Huang & Mi Peng & Yunlei Chen & Xiangbin Cai & Linlin Wang & Zenan Hu & Xiaodong Wen & Ning Wang & Dequan Xiao & Hong Jiang & Hongbin Sun & Hongyang Liu & Ding Ma, 2021. "Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Yao, Yunlong & Yu, Zhiquan & Lu, Chenyang & Sun, Fanfei & Wang, Yao & Sun, Zhichao & Liu, Yingya & Wang, Anjie, 2022. "Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide," Renewable Energy, Elsevier, vol. 197(C), pages 69-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33250-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.