IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12460-7.html
   My bibliography  Save this article

Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene

Author

Listed:
  • Fei Huang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Yuchen Deng

    (Peking University)

  • Yunlei Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Xiangbin Cai

    (Hong Kong University of Science and Technology)

  • Mi Peng

    (Peking University)

  • Zhimin Jia

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jinglin Xie

    (Peking University)

  • Dequan Xiao

    (University of New Haven)

  • Xiaodong Wen

    (Chinese Academy of Sciences
    Synfuels China Co., Ltd)

  • Ning Wang

    (Hong Kong University of Science and Technology)

  • Zheng Jiang

    (Chinese Academy of Science
    Shanghai Advanced Research Institute, Chinese Academy of Science)

  • Hongyang Liu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Ding Ma

    (Peking University)

Abstract

The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamond-graphene (ND@G), which exhibits excellent catalytic performance for the selective conversion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored over graphene through Cu-C bonds ensures the effective activation of acetylene and easy desorption of ethylene, which is the key for the outstanding activity and selectivity of the catalyst.

Suggested Citation

  • Fei Huang & Yuchen Deng & Yunlei Chen & Xiangbin Cai & Mi Peng & Zhimin Jia & Jinglin Xie & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Hongyang Liu & Ding Ma, 2019. "Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12460-7
    DOI: 10.1038/s41467-019-12460-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12460-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12460-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohu Ge & Mingying Dou & Yueqiang Cao & Xi Liu & Qiang Yuwen & Jing Zhang & Gang Qian & Xueqing Gong & Xinggui Zhou & Liwei Chen & Weikang Yuan & Xuezhi Duan, 2022. "Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Zhibo Liu & Fei Huang & Mi Peng & Yunlei Chen & Xiangbin Cai & Linlin Wang & Zenan Hu & Xiaodong Wen & Ning Wang & Dequan Xiao & Hong Jiang & Hongbin Sun & Hongyang Liu & Ding Ma, 2021. "Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Yao, Yunlong & Yu, Zhiquan & Lu, Chenyang & Sun, Fanfei & Wang, Yao & Sun, Zhichao & Liu, Yingya & Wang, Anjie, 2022. "Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide," Renewable Energy, Elsevier, vol. 197(C), pages 69-78.
    6. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yang Si & Yueyue Jiao & Maolin Wang & Shengling Xiang & Jiangyong Diao & Xiaowen Chen & Jiawei Chen & Yue Wang & Dequan Xiao & Xiaodong Wen & Ning Wang & Ding Ma & Hongyang Liu, 2024. "Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Dawei Yao & Yue Wang & Ying Li & Antai Li & Ziheng Zhen & Jing Lv & Fanfei Sun & Ruoou Yang & Jun Luo & Zheng Jiang & Yong Wang & Xinbin Ma, 2023. "Scalable synthesis of Cu clusters for remarkable selectivity control of intermediates in consecutive hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12460-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.