IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33069-3.html
   My bibliography  Save this article

Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones

Author

Listed:
  • Maja Marklund

    (Science for Life Laboratory)

  • Niklas Schultz

    (Karolinska Institute, Science for Life Laboratory)

  • Stefanie Friedrich

    (Stockholm University, Science for Laboratory)

  • Emelie Berglund

    (Science for Life Laboratory)

  • Firas Tarish

    (Karolinska Institute, Science for Life Laboratory)

  • Anna Tanoglidi

    (Evangelismos General Hospital)

  • Yao Liu

    (Karolinska Institute, Science for Life Laboratory)

  • Ludvig Bergenstråhle

    (Science for Life Laboratory)

  • Andrew Erickson

    (University of Oxford)

  • Thomas Helleday

    (Karolinska Institute, Science for Life Laboratory)

  • Alastair D. Lamb

    (University of Oxford)

  • Erik Sonnhammer

    (Stockholm University, Science for Laboratory)

  • Joakim Lundeberg

    (Science for Life Laboratory)

Abstract

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.

Suggested Citation

  • Maja Marklund & Niklas Schultz & Stefanie Friedrich & Emelie Berglund & Firas Tarish & Anna Tanoglidi & Yao Liu & Ludvig Bergenstråhle & Andrew Erickson & Thomas Helleday & Alastair D. Lamb & Erik Son, 2022. "Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33069-3
    DOI: 10.1038/s41467-022-33069-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33069-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33069-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emelie Berglund & Jonas Maaskola & Niklas Schultz & Stefanie Friedrich & Maja Marklund & Joseph Bergenstråhle & Firas Tarish & Anna Tanoglidi & Sanja Vickovic & Ludvig Larsson & Fredrik Salmén & Chri, 2018. "Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Andrew Erickson & Mengxiao He & Emelie Berglund & Maja Marklund & Reza Mirzazadeh & Niklas Schultz & Linda Kvastad & Alma Andersson & Ludvig Bergenstråhle & Joseph Bergenstråhle & Ludvig Larsson & Lei, 2022. "Spatially resolved clonal copy number alterations in benign and malignant tissue," Nature, Nature, vol. 608(7922), pages 360-367, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhixing Zhong & Junchen Hou & Zhixian Yao & Lei Dong & Feng Liu & Junqiu Yue & Tiantian Wu & Junhua Zheng & Gaoliang Ouyang & Chaoyong Yang & Jia Song, 2024. "Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Haoyang Li & Juexiao Zhou & Zhongxiao Li & Siyuan Chen & Xingyu Liao & Bin Zhang & Ruochi Zhang & Yu Wang & Shiwei Sun & Xin Gao, 2023. "A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Rongting Huang & Xianjie Huang & Yin Tong & Helen Y. N. Yan & Suet Yi Leung & Oliver Stegle & Yuanhua Huang, 2024. "Robust analysis of allele-specific copy number alterations from scRNA-seq data with XClone," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ziyang Tang & Zuotian Li & Tieying Hou & Tonglin Zhang & Baijian Yang & Jing Su & Qianqian Song, 2023. "SiGra: single-cell spatial elucidation through an image-augmented graph transformer," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Linhua Wang & Mirjana Maletic-Savatic & Zhandong Liu, 2022. "Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Ning Zhang & Luuk Harbers & Michele Simonetti & Constantin Diekmann & Quentin Verron & Enrico Berrino & Sara E. Bellomo & Gabriel M. C. Longo & Michael Ratz & Niklas Schultz & Firas Tarish & Peng Su &, 2024. "High clonal diversity and spatial genetic admixture in early prostate cancer and surrounding normal tissue," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Rohit Arora & Christian Cao & Mehul Kumar & Sarthak Sinha & Ayan Chanda & Reid McNeil & Divya Samuel & Rahul K. Arora & T. Wayne Matthews & Shamir Chandarana & Robert Hart & Joseph C. Dort & Jeff Bier, 2023. "Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Nikita Sushentsev & Gregory Hamm & Lucy Flint & Daniel Birtles & Aleksandr Zakirov & Jack Richings & Stephanie Ling & Jennifer Y. Tan & Mary A. McLean & Vinay Ayyappan & Ines Horvat Menih & Cara Brodi, 2024. "Metabolic imaging across scales reveals distinct prostate cancer phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    13. Caravagna Giulio, 2020. "Measuring evolutionary cancer dynamics from genome sequencing, one patient at a time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-12, December.
    14. Bohan Li & Feng Bao & Yimin Hou & Fengji Li & Hongjue Li & Yue Deng & Qionghai Dai, 2024. "Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Jie Liao & Jingyang Qian & Yin Fang & Zhuo Chen & Xiang Zhuang & Ningyu Zhang & Xin Shao & Yining Hu & Penghui Yang & Junyun Cheng & Yang Hu & Lingqi Yu & Haihong Yang & Jinlu Zhang & Xiaoyan Lu & Li , 2022. "De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Simon Davis & Connor Scott & Janina Oetjen & Philip D. Charles & Benedikt M. Kessler & Olaf Ansorge & Roman Fischer, 2023. "Deep topographic proteomics of a human brain tumour," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Yang Yang & Chenyu Chu & Li Liu & Chenbing Wang & Chen Hu & Shengan Rung & Yi Man & Yili Qu, 2023. "Tracing immune cells around biomaterials with spatial anchors during large-scale wound regeneration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Elena Denisenko & Leanne Kock & Adeline Tan & Aaron B. Beasley & Maria Beilin & Matthew E. Jones & Rui Hou & Dáithí Ó Muirí & Sanela Bilic & G. Raj K. A. Mohan & Stuart Salfinger & Simon Fox & Khaing , 2024. "Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33069-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.