IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33049-7.html
   My bibliography  Save this article

Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%

Author

Listed:
  • Jing Gao

    (École Polytechnique Fédérale de Lausanne)

  • Jun Li

    (École Polytechnique Fédérale de Lausanne)

  • Yuhang Liu

    (École Polytechnique Fédérale de Lausanne)

  • Meng Xia

    (École Polytechnique Fédérale de Lausanne)

  • Y. Zou Finfrock

    (Argonne National Laboratory)

  • Shaik Mohammed Zakeeruddin

    (École Polytechnique Fédérale de Lausanne)

  • Dan Ren

    (École Polytechnique Fédérale de Lausanne
    Xi’an Jiaotong University)

  • Michael Grätzel

    (École Polytechnique Fédérale de Lausanne)

Abstract

Copper catalysts modified with tin have been demonstrated to be selective for the electroreduction of carbon dioxide to carbon monoxide. However, such catalysts require the precise control of tin loading amount. Here, we develop a copper/tin-oxide catalyst with dominant tin oxide surface being formed via a spontaneous exchange reaction between sputtered tin and copper oxide. Even though the surface of this catalyst is tin-rich, it achieves an excellent performance towards carbon monoxide production in a flow cell. This contrasts with copper/tin-oxide prepared via atomic layer deposition since it yields selectivity towards carbon monoxide only on a copper-rich surface. Mechanism studies reveal that the tin sites on the tin-rich copper/tin-oxide surface achieve a suitable binding with adsorbed carbon monoxide under the presence of copper. Powered by a triple-junction solar cell, the copper/tin-oxide based electrolyzer sets a new benchmark solar-to-chemical energy conversion efficiency of 19.9 percent with a Faradaic efficiency of 98.9 percent towards carbon monoxide under simulated standard air mass 1.5 global illumination.

Suggested Citation

  • Jing Gao & Jun Li & Yuhang Liu & Meng Xia & Y. Zou Finfrock & Shaik Mohammed Zakeeruddin & Dan Ren & Michael Grätzel, 2022. "Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33049-7
    DOI: 10.1038/s41467-022-33049-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33049-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33049-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenhao Ren & Xin Tan & Jiangtao Qu & Sesi Li & Jiantao Li & Xin Liu & Simon P. Ringer & Julie M. Cairney & Kaixue Wang & Sean C. Smith & Chuan Zhao, 2021. "Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Manjeet Chhetri & Mingyu Wan & Zehua Jin & John Yeager & Case Sandor & Conner Rapp & Hui Wang & Sungsik Lee & Cameron J. Bodenschatz & Michael J. Zachman & Fanglin Che & Ming Yang, 2023. "Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jiahui Bi & Pengsong Li & Jiyuan Liu & Shuaiqiang Jia & Yong Wang & Qinggong Zhu & Zhimin Liu & Buxing Han, 2023. "Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33049-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.