IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21750-y.html
   My bibliography  Save this article

Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion

Author

Listed:
  • Wenhao Ren

    (University of New South Wales)

  • Xin Tan

    (The Australian National University Canberra)

  • Jiangtao Qu

    (The University of Sydney
    The University of Sydney)

  • Sesi Li

    (Shanghai Jiao Tong University)

  • Jiantao Li

    (Wuhan University of Technology)

  • Xin Liu

    (Shanghai Jiao Tong University)

  • Simon P. Ringer

    (The University of Sydney)

  • Julie M. Cairney

    (The University of Sydney
    The University of Sydney)

  • Kaixue Wang

    (Shanghai Jiao Tong University)

  • Sean C. Smith

    (The Australian National University Canberra)

  • Chuan Zhao

    (University of New South Wales)

Abstract

Direct experimental observations of the interface structure can provide vital insights into heterogeneous catalysis. Examples of interface design based on single atom and surface science are, however, extremely rare. Here, we report Cu–Sn single-atom surface alloys, where isolated Sn sites with high surface densities (up to 8%) are anchored on the Cu host, for efficient electrocatalytic CO2 reduction. The unique geometric and electronic structure of the Cu–Sn surface alloys (Cu97Sn3 and Cu99Sn1) enables distinct catalytic selectivity from pure Cu100 and Cu70Sn30 bulk alloy. The Cu97Sn3 catalyst achieves a CO Faradaic efficiency of 98% at a tiny overpotential of 30 mV in an alkaline flow cell, where a high CO current density of 100 mA cm−2 is obtained at an overpotential of 340 mV. Density functional theory simulation reveals that it is not only the elemental composition that dictates the electrocatalytic reactivity of Cu–Sn alloys; the local coordination environment of atomically dispersed, isolated Cu–Sn bonding plays the most critical role.

Suggested Citation

  • Wenhao Ren & Xin Tan & Jiangtao Qu & Sesi Li & Jiantao Li & Xin Liu & Simon P. Ringer & Julie M. Cairney & Kaixue Wang & Sean C. Smith & Chuan Zhao, 2021. "Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21750-y
    DOI: 10.1038/s41467-021-21750-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21750-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21750-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jing Gao & Jun Li & Yuhang Liu & Meng Xia & Y. Zou Finfrock & Shaik Mohammed Zakeeruddin & Dan Ren & Michael Grätzel, 2022. "Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Manjeet Chhetri & Mingyu Wan & Zehua Jin & John Yeager & Case Sandor & Conner Rapp & Hui Wang & Sungsik Lee & Cameron J. Bodenschatz & Michael J. Zachman & Fanglin Che & Ming Yang, 2023. "Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jiahui Bi & Pengsong Li & Jiyuan Liu & Shuaiqiang Jia & Yong Wang & Qinggong Zhu & Zhimin Liu & Buxing Han, 2023. "Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21750-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.