IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33031-3.html
   My bibliography  Save this article

Global energy spectrum of the general oceanic circulation

Author

Listed:
  • Benjamin A. Storer

    (University of Rochester)

  • Michele Buzzicotti

    (University of Rome Tor Vergata and INFN)

  • Hemant Khatri

    (University of Liverpool)

  • Stephen M. Griffies

    (NOAA Geophysical Fluid Dynamics Laboratory and Princeton University Atmospheric and Oceanic Sciences Program)

  • Hussein Aluie

    (University of Rochester)

Abstract

Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies $${{{{{{{\bf{{{{{{{{\mathcal{O}}}}}}}}}}}}}}}}({100})$$ O ( 100 ) km in size, which are the ocean’s analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean’s spatial scales has been derived mostly from Fourier analysis in small "representative” regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 104 km, and a previously unobserved power-law scaling over scales larger than 103 km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 102 km peaks in spring while KE at 103 km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth’s climate system, including the largest planetary scales.

Suggested Citation

  • Benjamin A. Storer & Michele Buzzicotti & Hemant Khatri & Stephen M. Griffies & Hussein Aluie, 2022. "Global energy spectrum of the general oceanic circulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33031-3
    DOI: 10.1038/s41467-022-33031-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33031-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33031-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hideharu Sasaki & Patrice Klein & Bo Qiu & Yoshikazu Sasai, 2014. "Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Jia-Rui Shi & Lynne D. Talley & Shang-Ping Xie & Qihua Peng & Wei Liu, 2021. "Ocean warming and accelerating Southern Ocean zonal flow," Nature Climate Change, Nature, vol. 11(12), pages 1090-1097, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyue Li & Qiang Wang & Sergey Danilov & Nikolay Koldunov & Caili Liu & Vasco Müller & Dmitry Sidorenko & Thomas Jung, 2024. "Eddy activity in the Arctic Ocean projected to surge in a warming world," Nature Climate Change, Nature, vol. 14(2), pages 156-162, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhiwei Zhang & Yuelin Liu & Bo Qiu & Yiyong Luo & Wenju Cai & Qingguo Yuan & Yinxing Liu & Hong Zhang & Hailong Liu & Mingfang Miao & Jinchao Zhang & Wei Zhao & Jiwei Tian, 2023. "Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Andrea Storto & Chunxue Yang, 2024. "Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Maurice F. Huguenin & Ryan M. Holmes & Matthew H. England, 2022. "Drivers and distribution of global ocean heat uptake over the last half century," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33031-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.