IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32967-w.html
   My bibliography  Save this article

All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W‒1 and small roll-offs

Author

Listed:
  • Hao Liu

    (South China University of Technology)

  • Yan Fu

    (South China University of Technology)

  • Ben Zhong Tang

    (The Chinese University of Hong Kong)

  • Zujin Zhao

    (South China University of Technology)

Abstract

Improving power efficiency (PE) and reducing roll-off are of significant importance for the commercialization of white organic light-emitting diodes (WOLEDs) in consideration of energy conservation. Herein, record-beating PE of 130.7 lm W−1 and outstanding external quantum efficiency (EQE) of 31.1% are achieved in all-fluorescence two-color WOLEDs based on a simple sandwich configuration of emitting layer consisting of sky-blue and orange delayed fluorescence materials. By introducing a red fluorescence dopant, all-fluorescence three-color WOLEDs with high color rendering index are constructed based on an interlayer sensitization configuration, furnishing ultrahigh PE of 110.7 lm W−1 and EQE of 30.8%. More importantly, both two-color and three-color WOLEDs maintain excellent PEs at operating luminance with smaller roll-offs than the reported state-of-the-art WOLEDs, and further device optimization realizes outstanding comprehensive performances of low driving voltages, large luminance, high PEs and long operational lifetimes. The underlying mechanisms of the impressive device performances are elucidated by host-tuning effect and electron-trapping effect, providing useful guidance for the development of energy-conserving all-fluorescence WOLEDs.

Suggested Citation

  • Hao Liu & Yan Fu & Ben Zhong Tang & Zujin Zhao, 2022. "All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W‒1 and small roll-offs," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32967-w
    DOI: 10.1038/s41467-022-32967-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32967-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32967-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chunmiao Han & Ruiming Du & Hui Xu & Sanyang Han & Peng Ma & Jinkun Bian & Chunbo Duan & Ying Wei & Mingzhi Sun & Xiaogang Liu & Wei Huang, 2021. "Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yiru Sun & Noel C. Giebink & Hiroshi Kanno & Biwu Ma & Mark E. Thompson & Stephen R. Forrest, 2006. "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature, Nature, vol. 440(7086), pages 908-912, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Hua & Yuchao Liu & Binbin Liu & Zhennan Zhao & Lei Zhang & Shouke Yan & Zhongjie Ren, 2022. "Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32967-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.