IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32811-1.html
   My bibliography  Save this article

Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen

Author

Listed:
  • Andrew Poole

    (Immunocore Ltd.)

  • Vijaykumar Karuppiah

    (Immunocore Ltd.)

  • Annabelle Hartt

    (University of Bristol, Biomedical Sciences Building, University Walk)

  • Jaafar N. Haidar

    (Eli Lilly & Co, Lilly Corporate Center)

  • Sylvie Moureau

    (Immunocore Ltd.)

  • Tomasz Dobrzycki

    (Immunocore Ltd.)

  • Conor Hayes

    (Immunocore Ltd.)

  • Christopher Rowley

    (Immunocore Ltd.)

  • Jorge Dias

    (Immunocore Ltd.)

  • Stephen Harper

    (Immunocore Ltd.)

  • Keir Barnbrook

    (Immunocore Ltd.)

  • Miriam Hock

    (Immunocore Ltd.)

  • Charlotte Coles

    (Immunocore Ltd.)

  • Wei Yang

    (Eli Lilly & Co, Lilly Corporate Center)

  • Milos Aleksic

    (Immunocore Ltd.)

  • Aimee Bence Lin

    (Eli Lilly & Co, Lilly Corporate Center)

  • Ross Robinson

    (Immunocore Ltd.)

  • Joe D. Dukes

    (Immunocore Ltd.)

  • Nathaniel Liddy

    (Immunocore Ltd.)

  • Marc Kamp

    (University of Bristol, Biomedical Sciences Building, University Walk)

  • Gregory D. Plowman

    (Eli Lilly & Co, Lilly Corporate Center)

  • Annelise Vuidepot

    (Immunocore Ltd.)

  • David K. Cole

    (Immunocore Ltd.)

  • Andrew D. Whale

    (Immunocore Ltd.)

  • Chandramouli Chillakuri

    (Immunocore Ltd.)

Abstract

Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.

Suggested Citation

  • Andrew Poole & Vijaykumar Karuppiah & Annabelle Hartt & Jaafar N. Haidar & Sylvie Moureau & Tomasz Dobrzycki & Conor Hayes & Christopher Rowley & Jorge Dias & Stephen Harper & Keir Barnbrook & Miriam , 2022. "Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32811-1
    DOI: 10.1038/s41467-022-32811-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32811-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32811-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jude Canon & Karen Rex & Anne Y. Saiki & Christopher Mohr & Keegan Cooke & Dhanashri Bagal & Kevin Gaida & Tyler Holt & Charles G. Knutson & Neelima Koppada & Brian A. Lanman & Jonathan Werner & Aaron, 2019. "The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity," Nature, Nature, vol. 575(7781), pages 217-223, November.
    2. Daichao Wu & D. Travis Gallagher & Ragul Gowthaman & Brian G. Pierce & Roy A. Mariuzza, 2020. "Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Lu & Yuan Chen & Min Jiang & Jie Wang & Yiting Li & Keke Ma & Wenqiao Sun & Xing Zheng & Jianxun Qi & Wenjing Jin & Yu Chen & Yan Chai & Catherine W. H. Zhang & Hao Liang & Shuguang Tan & George F, 2023. "KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Andrew C. McShan & David Flores-Solis & Yi Sun & Samuel E. Garfinkle & Jugmohit S. Toor & Michael C. Young & Nikolaos G. Sgourakis, 2023. "Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharine M. Wright & Sarah R. DiNapoli & Michelle S. Miller & P. Aitana Azurmendi & Xiaowei Zhao & Zhiheng Yu & Mayukh Chakrabarti & WuXian Shi & Jacqueline Douglass & Michael S. Hwang & Emily Han-Ch, 2023. "Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Cecily Choy & Joseph Chen & Jiangyuan Li & D. Travis Gallagher & Jian Lu & Daichao Wu & Ainslee Zou & Humza Hemani & Beverly A. Baptiste & Emily Wichmann & Qian Yang & Jeffrey Ciffelo & Rui Yin & Juli, 2023. "SARS-CoV-2 infection establishes a stable and age-independent CD8+ T cell response against a dominant nucleocapsid epitope using restricted T cell receptors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Kai-Bo Wang & Yushuang Liu & Jinzhu Li & Chengmei Xiao & Yingying Wang & Wei Gu & Yipu Li & Yuan-Zheng Xia & Tingdong Yan & Ming-Hua Yang & Ling-Yi Kong, 2022. "Structural insight into the bulge-containing KRAS oncogene promoter G-quadruplex bound to berberine and coptisine," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. John P. Finnigan & Jenna H. Newman & Yury Patskovsky & Larysa Patskovska & Andrew S. Ishizuka & Geoffrey M. Lynn & Robert A. Seder & Michelle Krogsgaard & Nina Bhardwaj, 2024. "Structural basis for self-discrimination by neoantigen-specific TCRs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Nishant K. Singh & Jesus A. Alonso & Jason R. Devlin & Grant L. J. Keller & George I. Gray & Adarsh K. Chiranjivi & Sara G. Foote & Lauren M. Landau & Alyssa G. Arbuiso & Laura I. Weiss & Aaron M. Ros, 2022. "A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Marie-Julie Nokin & Alessia Mira & Enrico Patrucco & Biagio Ricciuti & Sophie Cousin & Isabelle Soubeyran & Sonia San José & Serena Peirone & Livia Caizzi & Sandra Vietti Michelina & Aurelien Bourdon , 2024. "RAS-ON inhibition overcomes clinical resistance to KRAS G12C-OFF covalent blockade," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Johanna Lilja & Jasmin Kaivola & James R. W. Conway & Joni Vuorio & Hanna Parkkola & Pekka Roivas & Michal Dibus & Megan R. Chastney & Taru Varila & Guillaume Jacquemet & Emilia Peuhu & Emily Wang & U, 2024. "SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Hidenori Kitai & Philip H. Choi & Yu C. Yang & Jacob A. Boyer & Adele Whaley & Priya Pancholi & Claire Thant & Jason Reiter & Kevin Chen & Vladimir Markov & Hirokazu Taniguchi & Rui Yamaguchi & Hiromi, 2024. "Combined inhibition of KRASG12C and mTORC1 kinase is synergistic in non-small cell lung cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Yuan Lin & Theresa A. Ramelot & Simge Senyuz & Attila Gursoy & Hyunbum Jang & Ruth Nussinov & Ozlem Keskin & Yi Zheng, 2024. "Tumor-derived RHOA mutants interact with effectors in the GDP-bound state," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Irati Macaya & Marta Roman & Connor Welch & Rodrigo Entrialgo-Cadierno & Marina Salmon & Alba Santos & Iker Feliu & Joanna Kovalski & Ines Lopez & Maria Rodriguez-Remirez & Sara Palomino-Echeverria & , 2023. "Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Dae Gyu Kim & Yongseok Choi & Yuno Lee & Semi Lim & Jiwon Kong & JaeHa Song & Younah Roh & Dipesh S. Harmalkar & Kwanshik Lee & Ja-il Goo & Hye Young Cho & Ameeq Ul Mushtaq & Jihye Lee & Song Hwa Park, 2022. "AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Kim Nguyen & Turnee N. Malik & John C. Chaput, 2023. "Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32811-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.