IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32569-6.html
   My bibliography  Save this article

On maternity and the stronger immune response in women

Author

Listed:
  • Evan Mitchell

    (Western University)

  • Andrea L. Graham

    (Princeton University)

  • Francisco Úbeda

    (University of London Egham)

  • Geoff Wild

    (Western University)

Abstract

Medical research reports that women often exhibit stronger immune responses than men, while pathogens tend to be more virulent in men. Current explanations cannot account for this pattern, creating an obstacle for our understanding of infectious-disease outcomes and the incidence of autoimmune diseases. We offer an alternative explanation that relies on a fundamental difference between the sexes: maternity and the opportunities it creates for transmission of pathogens from mother to child (vertical transmission). Our explanation relies on a mathematical model of the co-evolution of host immunocompetence and pathogen virulence. Here, we show that when there is sufficient vertical transmission co-evolution leads women to defend strongly against temperate pathogens and men to defend weakly against aggressive pathogens, in keeping with medical observations. From a more applied perspective, we argue that limiting vertical transmission of infections would alleviate the disproportionate incidence of autoimmune diseases in women over evolutionary time.

Suggested Citation

  • Evan Mitchell & Andrea L. Graham & Francisco Úbeda & Geoff Wild, 2022. "On maternity and the stronger immune response in women," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32569-6
    DOI: 10.1038/s41467-022-32569-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32569-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32569-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    2. Alison M. Kim & Candace M. Tingen & Teresa K. Woodruff, 2010. "Sex bias in trials and treatment must end," Nature, Nature, vol. 465(7299), pages 688-689, June.
    3. Shani Talia Gal-Oz & Barbara Maier & Hideyuki Yoshida & Kumba Seddu & Nitzan Elbaz & Charles Czysz & Or Zuk & Barbara E. Stranger & Hadas Ner-Gaon & Tal Shay, 2019. "ImmGen report: sexual dimorphism in the immune system transcriptome," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. C. Jessica E. Metcalf & Andrea L. Graham, 2018. "Schedule and magnitude of reproductive investment under immune trade-offs explains sex differences in immunity," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Fabio Dercole & Sergio Rinaldi, 2008. "Introduction to Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications," Introductory Chapters, in: Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications, Princeton University Press.
    6. Andrew M. Stoehr & Hanna Kokko, 2006. "Sexual dimorphism in immunocompetence: what does life-history theory predict?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 17(5), pages 751-756, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    2. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    3. Pierre Bernhard, 2015. "Evolutionary Dynamics of the Handicap Principle: An Example," Dynamic Games and Applications, Springer, vol. 5(2), pages 214-227, June.
    4. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    5. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    6. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    7. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    8. Priklopil, Tadeas & Lehmann, Laurent, 2021. "Metacommunities, fitness and gradual evolution," Theoretical Population Biology, Elsevier, vol. 142(C), pages 12-35.
    9. Peña, Jorge & González-Forero, Mauricio, 2020. "Eusociality through conflict dissolution via maternal reproductive specialization," IAST Working Papers 20-110, Institute for Advanced Study in Toulouse (IAST).
    10. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    11. Hammerstein, Peter & Leimar, Olof, 2015. "Evolutionary Game Theory in Biology," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Ingela Alger & Slimane Dridi & Jonathan Stieglitz & Michael Wilson, 2022. "The evolution of early hominin food production and sharing," Working Papers hal-03681083, HAL.
    13. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    14. Amit Vutha & Martin Golubitsky, 2015. "Normal Forms and Unfoldings of Singular Strategy Functions," Dynamic Games and Applications, Springer, vol. 5(2), pages 180-213, June.
    15. Meng, Xin-zhu & Zhao, Sheng-nan & Zhang, Wen-yan, 2015. "Adaptive dynamics analysis of a predator–prey model with selective disturbance," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 946-958.
    16. Dercole, Fabio & Della Rossa, Fabio, 2017. "A deterministic eco-genetic model for the short-term evolution of exploited fish stocks," Ecological Modelling, Elsevier, vol. 343(C), pages 80-100.
    17. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    18. Danièle Meulders & Natalie Simeu & Sile Padraigin O'Dorchai, 2012. "Alma Mater, Homo Sapiens II: Les inégalités entre femmes et hommes dans les universités francophones de Belgique," ULB Institutional Repository 2013/135731, ULB -- Universite Libre de Bruxelles.
    19. Horan, Richard D. & Shogren, Jason F. & Bulte, Erwin H., 2011. "Joint determination of biological encephalization, economic specialization," Resource and Energy Economics, Elsevier, vol. 33(2), pages 426-439, May.
    20. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32569-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.