IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32557-w.html
   My bibliography  Save this article

Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries

Author

Listed:
  • Deqing Cao

    (Nanjing Tech University)

  • Chuan Tan

    (Nanjing Tech University)

  • Yuhui Chen

    (Nanjing Tech University)

Abstract

Lithium carbonate plays a critical role in both lithium-carbon dioxide and lithium-air batteries as the main discharge product and a product of side reactions, respectively. Understanding the decomposition of lithium carbonate during electrochemical oxidation (during battery charging) is key for improving both chemistries, but the decomposition mechanisms and the role of the carbon substrate remain under debate. Here, we use an in-situ differential electrochemical mass spectrometry-gas chromatography coupling system to quantify the gas evolution during the electrochemical oxidation of lithium carbonate on carbon substrates. Our results show that lithium carbonate decomposes to carbon dioxide and singlet oxygen mainly via an electrochemical process instead of via a chemical process in an electrolyte of lithium bis(trifluoromethanesulfonyl)imide in tetraglyme. Singlet oxygen attacks the carbon substrate and electrolyte to form both carbon dioxide and carbon monoxide—approximately 20% of the net gas evolved originates from these side reactions. Additionally, we show that cobalt(II,III) oxide, a typical oxygen evolution catalyst, stabilizes the precursor of singlet oxygen, thus inhibiting the formation of singlet oxygen and consequent side reactions.

Suggested Citation

  • Deqing Cao & Chuan Tan & Yuhui Chen, 2022. "Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32557-w
    DOI: 10.1038/s41467-022-32557-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32557-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32557-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nika Mahne & Bettina Schafzahl & Christian Leypold & Mario Leypold & Sandra Grumm & Anita Leitgeb & Gernot A. Strohmeier & Martin Wilkening & Olivier Fontaine & Denis Kramer & Christian Slugovc & Serg, 2017. "Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries," Nature Energy, Nature, vol. 2(5), pages 1-9, May.
    2. Won-Jin Kwak & Hun Kim & Yann K. Petit & Christian Leypold & Trung Thien Nguyen & Nika Mahne & Paul Redfern & Larry A. Curtiss & Hun-Gi Jung & Sergey M. Borisov & Stefan A. Freunberger & Yang-Kook Sun, 2019. "Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Doron Aurbach & Bryan D. McCloskey & Linda F. Nazar & Peter G. Bruce, 2016. "Advances in understanding mechanisms underpinning lithium–air batteries," Nature Energy, Nature, vol. 1(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingqi Liu & Zhiyuan Zhang & Junyang Tan & Biao Chen & Bingyi Lu & Rui Mao & Bilu Liu & Dashuai Wang & Guangmin Zhou & Hui-Ming Cheng, 2024. "Deciphering the contributing motifs of reconstructed cobalt (II) sulfides catalysts in Li-CO2 batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2022. "Modeling the multi-step discharge and charge reaction mechanisms of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 317(C).
    2. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    3. Anatoly Antipov & Roman Pichugov & Lilia Abunaeva & Shengfu Tong & Mikhail Petrov & Alla Pustovalova & Ivan Speshilov & Natalia Kartashova & Pavel Loktionov & Alexander Modestov & Artem Glazkov, 2022. "Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies," Energies, MDPI, vol. 15(19), pages 1-20, October.
    4. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2023. "Modeling the influence of water on the performance of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 330(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32557-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.