IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32521-8.html
   My bibliography  Save this article

Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity

Author

Listed:
  • Qiang Feng

    (University of Texas Southwestern Medical Center)

  • Zhida Liu

    (University of Texas Southwestern Medical Center)

  • Xuexin Yu

    (University of Texas Southwestern Medical Center)

  • Tongyi Huang

    (University of Texas Southwestern Medical Center)

  • Jiahui Chen

    (University of Texas Southwestern Medical Center)

  • Jian Wang

    (University of Texas Southwestern Medical Center)

  • Jonathan Wilhelm

    (University of Texas Southwestern Medical Center)

  • Suxin Li

    (University of Texas Southwestern Medical Center)

  • Jiwon Song

    (University of Texas Southwestern Medical Center)

  • Wei Li

    (University of Texas Southwestern Medical Center)

  • Zhichen Sun

    (University of Texas Southwestern Medical Center)

  • Baran D. Sumer

    (University of Texas Southwestern Medical Center)

  • Bo Li

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

  • Yang-Xin Fu

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

  • Jinming Gao

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

Abstract

Lactate is a key metabolite produced from glycolytic metabolism of glucose molecules, yet it also serves as a primary carbon fuel source for many cell types. In the tumor-immune microenvironment, effect of lactate on cancer and immune cells can be highly complex and hard to decipher, which is further confounded by acidic protons, a co-product of glycolysis. Here we show that lactate is able to increase stemness of CD8+ T cells and augments anti-tumor immunity. Subcutaneous administration of sodium lactate but not glucose to mice bearing transplanted MC38 tumors results in CD8+ T cell-dependent tumor growth inhibition. Single cell transcriptomics analysis reveals increased proportion of stem-like TCF-1-expressing CD8+ T cells among intra-tumoral CD3+ cells, a phenotype validated by in vitro lactate treatment of T cells. Mechanistically, lactate inhibits histone deacetylase activity, which results in increased acetylation at H3K27 of the Tcf7 super enhancer locus, leading to increased Tcf7 gene expression. CD8+ T cells in vitro pre-treated with lactate efficiently inhibit tumor growth upon adoptive transfer to tumor-bearing mice. Our results provide evidence for an intrinsic role of lactate in anti-tumor immunity independent of the pH-dependent effect of lactic acid, and might advance cancer immune therapy.

Suggested Citation

  • Qiang Feng & Zhida Liu & Xuexin Yu & Tongyi Huang & Jiahui Chen & Jian Wang & Jonathan Wilhelm & Suxin Li & Jiwon Song & Wei Li & Zhichen Sun & Baran D. Sumer & Bo Li & Yang-Xin Fu & Jinming Gao, 2022. "Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32521-8
    DOI: 10.1038/s41467-022-32521-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32521-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32521-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McLane J. Watson & Paolo D. A. Vignali & Steven J. Mullett & Abigail E. Overacre-Delgoffe & Ronal M. Peralta & Stephanie Grebinoski & Ashley V. Menk & Natalie L. Rittenhouse & Kristin DePeaux & Ryan D, 2021. "Metabolic support of tumour-infiltrating regulatory T cells by lactic acid," Nature, Nature, vol. 591(7851), pages 645-651, March.
    2. Bradley I. Reinfeld & Matthew Z. Madden & Melissa M. Wolf & Anna Chytil & Jackie E. Bader & Andrew R. Patterson & Ayaka Sugiura & Allison S. Cohen & Ahmed Ali & Brian T. Do & Alexander Muir & Caroline, 2021. "Cell-programmed nutrient partitioning in the tumour microenvironment," Nature, Nature, vol. 593(7858), pages 282-288, May.
    3. Sheng Hui & Jonathan M. Ghergurovich & Raphael J. Morscher & Cholsoon Jang & Xin Teng & Wenyun Lu & Lourdes A. Esparza & Tannishtha Reya & Le Zhan & Jessie Yanxiang Guo & Eileen White & Joshua D. Rabi, 2017. "Glucose feeds the TCA cycle via circulating lactate," Nature, Nature, vol. 551(7678), pages 115-118, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenglong Sun & Anqiang Wang & Yanhe Zhou & Panpan Chen & Xiangyi Wang & Jianpeng Huang & Jiamin Gao & Xiao Wang & Liebo Shu & Jiawei Lu & Wentao Dai & Zhaode Bu & Jiafu Ji & Jiuming He, 2023. "Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Ping Yang & Hong Qin & Yiyu Li & Anhua Xiao & Enze Zheng & Han Zeng & Chunxiao Su & Xiaoqing Luo & Qiannan Lu & Meng Liao & Lei Zhao & Li Wei & Zac Varghese & John F. Moorhead & Yaxi Chen & Xiong Z. R, 2022. "CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Syamantak Khan & June Ho Shin & Valentina Ferri & Ning Cheng & Julia E. Noel & Calvin Kuo & John B. Sunwoo & Guillem Pratx, 2021. "High-resolution positron emission microscopy of patient-derived tumor organoids," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    7. Guihong Lu & Xiaojun Wang & Feng Li & Shuang Wang & Jiawei Zhao & Jinyi Wang & Jing Liu & Chengliang Lyu & Peng Ye & Hui Tan & Weiping Li & Guanghui Ma & Wei Wei, 2022. "Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Ali Vaziri-Gohar & Jonathan J. Hue & Ata Abbas & Hallie J. Graor & Omid Hajihassani & Mehrdad Zarei & George Titomihelakis & John Feczko & Moeez Rathore & Sylwia Chelstowska & Alexander W. Loftus & Ru, 2023. "Increased glucose availability sensitizes pancreatic cancer to chemotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Luca Simula & Mattia Fumagalli & Lene Vimeux & Irena Rajnpreht & Philippe Icard & Gary Birsen & Dongjie An & Frédéric Pendino & Adrien Rouault & Nadège Bercovici & Diane Damotte & Audrey Lupo-Mansuet , 2024. "Mitochondrial metabolism sustains CD8+ T cell migration for an efficient infiltration into solid tumors," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    10. Yuefan Huang & Vakul Mohanty & Merve Dede & Kyle Tsai & May Daher & Li Li & Katayoun Rezvani & Ken Chen, 2023. "Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Katia Monsorno & Kyllian Ginggen & Andranik Ivanov & An Buckinx & Arnaud L. Lalive & Anna Tchenio & Sam Benson & Marc Vendrell & Angelo D’Alessandro & Dieter Beule & Luc Pellerin & Manuel Mameli & Ros, 2023. "Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Lanqi Gong & Jie Luo & Yu Zhang & Yuma Yang & Shanshan Li & Xiaona Fang & Baifeng Zhang & Jiao Huang & Larry Ka-Yue Chow & Dittman Chung & Jinlin Huang & Cuicui Huang & Qin Liu & Lu Bai & Yuen Chak Ti, 2023. "Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    13. Matteo Villa & David E. Sanin & Petya Apostolova & Mauro Corrado & Agnieszka M. Kabat & Carmine Cristinzio & Annamaria Regina & Gustavo E. Carrizo & Nisha Rana & Michal A. Stanczak & Francesc Baixauli, 2024. "Prostaglandin E2 controls the metabolic adaptation of T cells to the intestinal microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Xueman Chen & Rong Luo & Yunmei Zhang & Shuying Ye & Xin Zeng & Jiang Liu & Di Huang & Yujie Liu & Qiang Liu & Man-Li Luo & Erwei Song, 2022. "Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Dorothy Koveal & Paul C. Rosen & Dylan J. Meyer & Carlos Manlio Díaz-García & Yongcheng Wang & Li-Heng Cai & Peter J. Chou & David A. Weitz & Gary Yellen, 2022. "A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32521-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.