Molecular ensemble junctions with inter-molecular quantum interference
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32476-w
Download full text from publisher
References listed on IDEAS
- R. Schuster & E. Buks & M. Heiblum & D. Mahalu & V. Umansky & Hadas Shtrikman, 1997. "Phase measurement in a quantum dot via a double-slit interference experiment," Nature, Nature, vol. 385(6615), pages 417-420, January.
- Marco Carlotti & Andrii Kovalchuk & Tobias Wächter & Xinkai Qiu & Michael Zharnikov & Ryan C. Chiechi, 2016. "Conformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
- Gabriel Puebla-Hellmann & Koushik Venkatesan & Marcel Mayor & Emanuel Lörtscher, 2018. "Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices," Nature, Nature, vol. 559(7713), pages 232-235, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thanh Luan Phan & Sohyeon Seo & Yunhee Cho & Quoc An Vu & Young Hee Lee & Dinh Loc Duong & Hyoyoung Lee & Woo Jong Yu, 2022. "CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Joel M. Fruhman & Hippolyte P.A.G. Astier & Bruno Ehrler & Marcus L. Böhm & Lissa F. L. Eyre & Piran R. Kidambi & Ugo Sassi & Domenico Fazio & Jonathan P. Griffiths & Alexander J. Robson & Benjamin J., 2021. "High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Jorge Trasobares & Juan Carlos Martín-Romano & Muhammad Waqas Khaliq & Sandra Ruiz-Gómez & Michael Foerster & Miguel Ángel Niño & Patricia Pedraz & Yannick. J. Dappe & Marina Calero Ory & Julia García, 2023. "Hybrid molecular graphene transistor as an operando and optoelectronic platform," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xinkai Qiu & Ryan C. Chiechi, 2022. "Printable logic circuits comprising self-assembled protein complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32476-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.