IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32350-9.html
   My bibliography  Save this article

Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau

Author

Listed:
  • Pablo Gracia

    (University of Zaragoza
    University of Zaragoza)

  • David Polanco

    (University of Zaragoza
    University of Zaragoza)

  • Jorge Tarancón-Díez

    (University of Zaragoza
    University of Zaragoza)

  • Ilenia Serra

    (University of Zaragoza)

  • Maruan Bracci

    (University of Zaragoza)

  • Javier Oroz

    (“Rocasolano” Institute for Physical Chemistry, CSIC)

  • Douglas V. Laurents

    (“Rocasolano” Institute for Physical Chemistry, CSIC)

  • Inés García

    (University of Zaragoza
    Centro Universitario de la Defensa, Academia General Militar)

  • Nunilo Cremades

    (University of Zaragoza
    University of Zaragoza)

Abstract

Amyloid aggregation of α-synuclein (αS) is the hallmark of Parkinson’s disease and other synucleinopathies. Recently, Tau protein, generally associated with Alzheimer’s disease, has been linked to αS pathology and observed to co-localize in αS-rich disease inclusions, although the molecular mechanisms for the co-aggregation of both proteins remain elusive. We report here that αS phase-separates into liquid condensates by electrostatic complex coacervation with positively charged polypeptides such as Tau. Condensates undergo either fast gelation or coalescence followed by slow amyloid aggregation depending on the affinity of αS for the poly-cation and the rate of valence exhaustion of the condensate network. By combining a set of advanced biophysical techniques, we have been able to characterize αS/Tau liquid-liquid phase separation and identified key factors that lead to the formation of hetero-aggregates containing both proteins in the interior of the liquid protein condensates.

Suggested Citation

  • Pablo Gracia & David Polanco & Jorge Tarancón-Díez & Ilenia Serra & Maruan Bracci & Javier Oroz & Douglas V. Laurents & Inés García & Nunilo Cremades, 2022. "Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32350-9
    DOI: 10.1038/s41467-022-32350-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32350-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32350-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas M. Kanaan & Chelsey Hamel & Tessa Grabinski & Benjamin Combs, 2020. "Liquid-liquid phase separation induces pathogenic tau conformations in vitro," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqi Huang & Jitao Wen & Lisa-Marie Ramirez & Eymen Gümüşdil & Pravin Pokhrel & Viet H. Man & Haiqiong Ye & Yue Han & Yunfei Liu & Ping Li & Zhengding Su & Junmei Wang & Hanbin Mao & Markus Zweckste, 2023. "Methylene blue accelerates liquid-to-gel transition of tau condensates impacting tau function and pathology," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Xi Li & Linwei Yu & Xikai Liu & Tianyi Shi & Yu Zhang & Yushuo Xiao & Chen Wang & Liangliang Song & Ning Li & Xinran Liu & Yuchen Chen & Robert B. Petersen & Xiang Cheng & Weikang Xue & Yanxun V. Yu &, 2024. "β-synuclein regulates the phase transitions and amyloid conversion of α-synuclein," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aishwarya Agarwal & Lisha Arora & Sandeep K. Rai & Anamika Avni & Samrat Mukhopadhyay, 2022. "Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yongqi Huang & Jitao Wen & Lisa-Marie Ramirez & Eymen Gümüşdil & Pravin Pokhrel & Viet H. Man & Haiqiong Ye & Yue Han & Yunfei Liu & Ping Li & Zhengding Su & Junmei Wang & Hanbin Mao & Markus Zweckste, 2023. "Methylene blue accelerates liquid-to-gel transition of tau condensates impacting tau function and pathology," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Qin Peng & Ziliang Huang & Kun Sun & Yahan Liu & Chi Woo Yoon & Reed E. S. Harrison & Danielle L. Schmitt & Linshan Zhu & Yiqian Wu & Ipek Tasan & Huimin Zhao & Jin Zhang & Sheng Zhong & Shu Chien & Y, 2022. "Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Shanley F. Longfield & Mahdie Mollazade & Tristan P. Wallis & Rachel S. Gormal & Merja Joensuu & Jesse R. Wark & Ashley J. Waardenberg & Christopher Small & Mark E. Graham & Frédéric A. Meunier & Ramó, 2023. "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32350-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.