IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16580-3.html
   My bibliography  Save this article

Liquid-liquid phase separation induces pathogenic tau conformations in vitro

Author

Listed:
  • Nicholas M. Kanaan

    (Michigan State University
    Michigan State University
    Mercy Health Saint Mary’s)

  • Chelsey Hamel

    (Michigan State University)

  • Tessa Grabinski

    (Michigan State University)

  • Benjamin Combs

    (Michigan State University)

Abstract

Formation of membrane-less organelles via liquid-liquid phase separation is one way cells meet the biological requirement for spatiotemporal regulation of cellular components and reactions. Recently, tau, a protein known for its involvement in Alzheimer’s disease and other tauopathies, was found to undergo liquid–liquid phase separation making it one of several proteins associated with neurodegenerative diseases to do so. Here, we demonstrate that tau forms dynamic liquid droplets in vitro at physiological protein levels upon molecular crowding in buffers that resemble physiological conditions. Tau droplet formation is significantly enhanced by disease-associated modifications, including the AT8 phospho-epitope and the P301L tau mutation linked to an inherited tauopathy. Moreover, tau droplet dynamics are significantly reduced by these modified forms of tau. Extended phase separation promoted a time-dependent adoption of toxic conformations and oligomerization, but not filamentous aggregation. P301L tau protein showed the greatest oligomer formation following extended phase separation. These findings suggest that phase separation of tau may facilitate the formation of non-filamentous pathogenic tau conformations.

Suggested Citation

  • Nicholas M. Kanaan & Chelsey Hamel & Tessa Grabinski & Benjamin Combs, 2020. "Liquid-liquid phase separation induces pathogenic tau conformations in vitro," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16580-3
    DOI: 10.1038/s41467-020-16580-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16580-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16580-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Gracia & David Polanco & Jorge Tarancón-Díez & Ilenia Serra & Maruan Bracci & Javier Oroz & Douglas V. Laurents & Inés García & Nunilo Cremades, 2022. "Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Qin Peng & Ziliang Huang & Kun Sun & Yahan Liu & Chi Woo Yoon & Reed E. S. Harrison & Danielle L. Schmitt & Linshan Zhu & Yiqian Wu & Ipek Tasan & Huimin Zhao & Jin Zhang & Sheng Zhong & Shu Chien & Y, 2022. "Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Aishwarya Agarwal & Lisha Arora & Sandeep K. Rai & Anamika Avni & Samrat Mukhopadhyay, 2022. "Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yongqi Huang & Jitao Wen & Lisa-Marie Ramirez & Eymen Gümüşdil & Pravin Pokhrel & Viet H. Man & Haiqiong Ye & Yue Han & Yunfei Liu & Ping Li & Zhengding Su & Junmei Wang & Hanbin Mao & Markus Zweckste, 2023. "Methylene blue accelerates liquid-to-gel transition of tau condensates impacting tau function and pathology," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Shanley F. Longfield & Mahdie Mollazade & Tristan P. Wallis & Rachel S. Gormal & Merja Joensuu & Jesse R. Wark & Ashley J. Waardenberg & Christopher Small & Mark E. Graham & Frédéric A. Meunier & Ramó, 2023. "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16580-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.