IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32016-6.html
   My bibliography  Save this article

Native metabolomics identifies the rivulariapeptolide family of protease inhibitors

Author

Listed:
  • Raphael Reher

    (University of California San Diego
    Martin-Luther-University Halle-Wittenberg
    University of Marburg)

  • Allegra T. Aron

    (University of California San Diego)

  • Pavla Fajtová

    (University of California San Diego)

  • Paolo Stincone

    (University of Tuebingen)

  • Berenike Wagner

    (University of Tuebingen
    University of Tuebingen)

  • Alicia I. Pérez-Lorente

    (Universidad de Málaga)

  • Chenxi Liu

    (University of California San Diego)

  • Ido Y. Ben Shalom

    (University of California San Diego)

  • Wout Bittremieux

    (University of California San Diego)

  • Mingxun Wang

    (University of California San Diego)

  • Kyowon Jeong

    (University of Tuebingen)

  • Marie L. Matos-Hernandez

    (University of Puerto Rico - Medical Sciences Campus)

  • Kelsey L. Alexander

    (University of California San Diego
    University of California San Diego)

  • Eduardo J. Caro-Diaz

    (University of Puerto Rico - Medical Sciences Campus)

  • C. Benjamin Naman

    (Ningbo University)

  • J. H. William Scanlan

    (University of Marburg)

  • Phil M. M. Hochban

    (University of Marburg)

  • Wibke E. Diederich

    (University of Marburg)

  • Carlos Molina-Santiago

    (Universidad de Málaga)

  • Diego Romero

    (Universidad de Málaga)

  • Khaled A. Selim

    (University of Tuebingen
    University of Tuebingen)

  • Peter Sass

    (University of Tuebingen
    University of Tuebingen)

  • Heike Brötz-Oesterhelt

    (University of Tuebingen
    University of Tuebingen
    Partner Site Tuebingen)

  • Chambers C. Hughes

    (University of Tuebingen
    University of Tuebingen
    Partner Site Tuebingen)

  • Pieter C. Dorrestein

    (University of California San Diego)

  • Anthony J. O’Donoghue

    (University of California San Diego)

  • William H. Gerwick

    (University of California San Diego
    University of California San Diego)

  • Daniel Petras

    (University of California San Diego
    University of California San Diego
    University of Tuebingen
    University of Tuebingen)

Abstract

The identity and biological activity of most metabolites still remain unknown. A bottleneck in the exploration of metabolite structures and pharmaceutical activities is the compound purification needed for bioactivity assignments and downstream structure elucidation. To enable bioactivity-focused compound identification from complex mixtures, we develop a scalable native metabolomics approach that integrates non-targeted liquid chromatography tandem mass spectrometry and detection of protein binding via native mass spectrometry. A native metabolomics screen for protease inhibitors from an environmental cyanobacteria community reveals 30 chymotrypsin-binding cyclodepsipeptides. Guided by the native metabolomics results, we select and purify five of these compounds for full structure elucidation via tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy as well as evaluation of their biological activities. These results identify rivulariapeptolides as a family of serine protease inhibitors with nanomolar potency, highlighting native metabolomics as a promising approach for drug discovery, chemical ecology, and chemical biology studies.

Suggested Citation

  • Raphael Reher & Allegra T. Aron & Pavla Fajtová & Paolo Stincone & Berenike Wagner & Alicia I. Pérez-Lorente & Chenxi Liu & Ido Y. Ben Shalom & Wout Bittremieux & Mingxun Wang & Kyowon Jeong & Marie L, 2022. "Native metabolomics identifies the rivulariapeptolide family of protease inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32016-6
    DOI: 10.1038/s41467-022-32016-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32016-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32016-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin Schmid & Daniel Petras & Louis-Félix Nothias & Mingxun Wang & Allegra T. Aron & Annika Jagels & Hiroshi Tsugawa & Johannes Rainer & Mar Garcia-Aloy & Kai Dührkop & Ansgar Korf & Tomáš Pluskal & , 2021. "Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Hsin-Yung Yen & Kin Kuan Hoi & Idlir Liko & George Hedger & Michael R. Horrell & Wanling Song & Di Wu & Philipp Heine & Tony Warne & Yang Lee & Byron Carpenter & Andreas Plückthun & Christopher G. Tat, 2018. "PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling," Nature, Nature, vol. 559(7714), pages 423-427, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Di Wu & Renhong Yan & Siyuan Song & Andrew K. Swansiger & Yaning Li & James S. Prell & Qiang Zhou & Carol V. Robinson, 2024. "The complete assembly of human LAT1-4F2hc complex provides insights into its regulation, function and localisation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Wout Bittremieux & Nicole E. Avalon & Sydney P. Thomas & Sarvar A. Kakhkhorov & Alexander A. Aksenov & Paulo Wender P. Gomes & Christine M. Aceves & Andrés Mauricio Caraballo-Rodríguez & Julia M. Gaug, 2023. "Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Ana Carolina Dantas Machado & Stephany Flores Ramos & Julia M. Gauglitz & Anne-Marie Fassler & Daniel Petras & Alexander A. Aksenov & Un Bi Kim & Michael Lazarowicz & Abbey Barnard Giustini & Hamed Ar, 2023. "Portosystemic shunt placement reveals blood signatures for the development of hepatic encephalopathy through mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Nicholas J. Morehouse & Trevor N. Clark & Emily J. McMann & Jeffrey A. Santen & F. P. Jake Haeckl & Christopher A. Gray & Roger G. Linington, 2023. "Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Fabian Bumbak & James B. Bower & Skylar C. Zemmer & Asuka Inoue & Miquel Pons & Juan Carlos Paniagua & Fei Yan & James Ford & Hongwei Wu & Scott A. Robson & Ross A. D. Bathgate & Daniel J. Scott & Pau, 2023. "Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Emily A. Chapman & David S. Roberts & Timothy N. Tiambeng & Jãán Andrews & Man-Di Wang & Emily A. Reasoner & Jake A. Melby & Brad H. Li & Donguk Kim & Andrew J. Alpert & Song Jin & Ying Ge, 2023. "Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Zhiwei Zhou & Mingdu Luo & Haosong Zhang & Yandong Yin & Yuping Cai & Zheng-Jiang Zhu, 2022. "Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32016-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.