IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31842-y.html
   My bibliography  Save this article

PTEN inhibits AMPK to control collective migration

Author

Listed:
  • Florent Peglion

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer)

  • Lavinia Capuana

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer
    Sorbonne Université)

  • Isabelle Perfettini

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer)

  • Laurent Boucontet

    (Institut Pasteur, CNRS UMR3738)

  • Ben Braithwaite

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer)

  • Emma Colucci-Guyon

    (Institut Pasteur, CNRS UMR3738)

  • Emie Quissac

    (Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC University Paris 04 UMR S1127, Institut du Cerveau, ICM)

  • Karin Forsberg-Nilsson

    (Uppsala University)

  • Flora Llense

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer
    Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR7622)

  • Sandrine Etienne-Manneville

    (Institut Pasteur, CNRS UMR3691, Université Paris Cité, Équipe Labellisée Ligue Contre le Cancer)

Abstract

Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness.

Suggested Citation

  • Florent Peglion & Lavinia Capuana & Isabelle Perfettini & Laurent Boucontet & Ben Braithwaite & Emma Colucci-Guyon & Emie Quissac & Karin Forsberg-Nilsson & Flora Llense & Sandrine Etienne-Manneville, 2022. "PTEN inhibits AMPK to control collective migration," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31842-y
    DOI: 10.1038/s41467-022-31842-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31842-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31842-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Hee Lee & Hyongjong Koh & Myungjin Kim & Yongsung Kim & Soo Young Lee & Roger E. Karess & Sang-Hee Lee & Minho Shong & Jin-Man Kim & Jaeseob Kim & Jongkyeong Chung, 2007. "Energy-dependent regulation of cell structure by AMP-activated protein kinase," Nature, Nature, vol. 447(7147), pages 1017-1020, June.
    2. Matthias Osswald & Erik Jung & Felix Sahm & Gergely Solecki & Varun Venkataramani & Jonas Blaes & Sophie Weil & Heinz Horstmann & Benedikt Wiestler & Mustafa Syed & Lulu Huang & Miriam Ratliff & Kianu, 2015. "Brain tumour cells interconnect to a functional and resistant network," Nature, Nature, vol. 528(7580), pages 93-98, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Hai & Dirk C. Hoffmann & Robin J. Wagener & Daniel D. Azorin & David Hausmann & Ruifan Xie & Magnus-Carsten Huppertz & Julien Hiblot & Philipp Sievers & Sophie Heuer & Jakob Ito & Gina Cebulla & , 2024. "A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    2. Yaqiong Li & Zhipeng Niu & Jichao Yang & Xuke Yang & Yukun Chen & Yingying Li & Xiaohan Liang & Jingwen Zhang & Fuqiang Fan & Ping Wu & Chao Peng & Bang Shen, 2023. "Rapid metabolic reprogramming mediated by the AMP-activated protein kinase during the lytic cycle of Toxoplasma gondii," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Rana Salam & Alexa Saliou & Franck Bielle & Mathilde Bertrand & Christophe Antoniewski & Catherine Carpentier & Agusti Alentorn & Laurent Capelle & Marc Sanson & Emmanuelle Huillard & Léa Bellenger & , 2023. "Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Ryan Thiessen & Thomas Hillen, 2021. "Anisotropic Network Patterns in Kinetic and Diffusive Chemotaxis Models," Mathematics, MDPI, vol. 9(13), pages 1-22, July.
    6. Yuanning Zheng & Francisco Carrillo-Perez & Marija Pizurica & Dieter Henrik Heiland & Olivier Gevaert, 2023. "Spatial cellular architecture predicts prognosis in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31842-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.