IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31584-x.html
   My bibliography  Save this article

Estuarine plastisphere as an overlooked source of N2O production

Author

Listed:
  • Xiaoxuan Su

    (Chinese Academy of Sciences
    Southwest University)

  • Leyang Yang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Kai Yang

    (Chinese Academy of Sciences)

  • Yijia Tang

    (The University of Sydney)

  • Teng Wen

    (Nanjing Normal University)

  • Yingmu Wang

    (Fuzhou University)

  • Matthias C. Rillig

    (Freie Universität Berlin, Institute of Biology
    Berlin-Brandenburg Institute of Advanced Biodiversity Research)

  • Lena Rohe

    (Thünen Institute of Climate-Smart Agriculture)

  • Junliang Pan

    (Chongqing University)

  • Hu Li

    (Chinese Academy of Sciences)

  • Yong-guan Zhu

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

“Plastisphere”, microbial communities colonizing plastic debris, has sparked global concern for marine ecosystems. Microbiome inhabiting this novel human-made niche has been increasingly characterized; however, whether the plastisphere holds crucial roles in biogeochemical cycling remains largely unknown. Here we evaluate the potential of plastisphere in biotic and abiotic denitrification and nitrous oxide (N2O) production in estuaries. Biofilm formation provides anoxic conditions favoring denitrifiers. Comparing with surrounding bulk water, plastisphere exhibits a higher denitrifying activity and N2O production, suggesting an overlooked N2O source. Regardless of plastisphere and bulk water, bacterial and fungal denitrifications are the main regulators for N2O production instead of chemodenitrification. However, the contributions of bacteria and fungi in the plastisphere are different from those in bulk water, indicating a distinct N2O production pattern in the plastisphere. These findings pinpoint plastisphere as a N2O source, and provide insights into roles of the new biotope in biogeochemical cycling in the Anthropocene.

Suggested Citation

  • Xiaoxuan Su & Leyang Yang & Kai Yang & Yijia Tang & Teng Wen & Yingmu Wang & Matthias C. Rillig & Lena Rohe & Junliang Pan & Hu Li & Yong-guan Zhu, 2022. "Estuarine plastisphere as an overlooked source of N2O production," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31584-x
    DOI: 10.1038/s41467-022-31584-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31584-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31584-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naohiro Yoshida & Sakae Toyoda, 2000. "Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers," Nature, Nature, vol. 405(6784), pages 330-334, May.
    2. R. L. Thompson & L. Lassaletta & P. K. Patra & C. Wilson & K. C. Wells & A. Gressent & E. N. Koffi & M. P. Chipperfield & W. Winiwarter & E. A. Davidson & H. Tian & J. G. Canadell, 2019. "Acceleration of global N2O emissions seen from two decades of atmospheric inversion," Nature Climate Change, Nature, vol. 9(12), pages 993-998, December.
    3. Meredith E. Seeley & Bongkeun Song & Renia Passie & Robert C. Hale, 2020. "Microplastics affect sedimentary microbial communities and nitrogen cycling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang-Hua Chen & Jiao Feng & Paul L. E. Bodelier & Ziming Yang & Qiaoyun Huang & Manuel Delgado-Baquerizo & Peng Cai & Wenfeng Tan & Yu-Rong Liu, 2024. "Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raquel Pérez-Reverón & Sergio J. Álvarez-Méndez & Rebecca Magdalena Kropp & Adolfo Perdomo-González & Javier Hernández-Borges & Francisco J. Díaz-Peña, 2022. "Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield," Agriculture, MDPI, vol. 12(8), pages 1-29, August.
    2. Zelong Li & Jing Wang & Hao Yue & Miaomiao Du & Yuan Jin & Jingfeng Fan, 2023. "Marine toxin domoic acid alters nitrogen cycling in sediments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Alves, Luís & Holz, Laura I.V. & Fernandes, Celina & Ribeirinha, Paulo & Mendes, Diogo & Fagg, Duncan P. & Mendes, Adélio, 2022. "A comprehensive review of NOx and N2O mitigation from industrial streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Magda Monteiro & Marco Costa, 2023. "Change Point Detection by State Space Modeling of Long-Term Air Temperature Series in Europe," Stats, MDPI, vol. 6(1), pages 1-18, January.
    6. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    7. Aurélien Saghaï & Grace Pold & Christopher M. Jones & Sara Hallin, 2023. "Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    9. Katarzyna Wolny-Koładka & Renata Jarosz & Michał Juda & Monika Mierzwa-Hersztek, 2022. "Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    10. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    11. Yunpeng Qiu & Yi Zhang & Kangcheng Zhang & Xinyu Xu & Yunfeng Zhao & Tongshuo Bai & Yexin Zhao & Hao Wang & Xiongjie Sheng & Sean Bloszies & Christopher J. Gillespie & Tangqing He & Yang Wang & Huaiha, 2024. "Intermediate soil acidification induces highest nitrous oxide emissions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    13. Motoko Inatomi & Tomohiro Hajima & Akihiko Ito, 2019. "Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    14. Peiyi Zhang & Teng Wen & Yangmei Hu & Jinbo Zhang & Zucong Cai, 2021. "Can N Fertilizer Addition Affect N 2 O Isotopocule Signatures for Soil N 2 O Source Partitioning?," IJERPH, MDPI, vol. 18(9), pages 1-10, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31584-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.