IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31409-x.html
   My bibliography  Save this article

Separate luminous structures leading positive leader steps

Author

Listed:
  • Shengxin Huang

    (China Electric Power Research Institute
    Hefei University of Technology)

  • Weijiang Chen

    (State Grid Corporation of China)

  • Zhong Fu

    (State Grid Anhui Electric Power Company)

  • Yufei Fu

    (Hefei University of Technology)

  • Nianwen Xiang

    (Hefei University of Technology)

  • Xinjie Qiu

    (State Grid Anhui Electric Power Company)

  • Weidong Shi

    (China Electric Power Research Institute)

  • Dengfeng Cheng

    (State Grid Anhui Electric Power Company)

  • Zhiyuan Zhang

    (Huazhong University of Science and Technology)

Abstract

The physics governing the propagation of lightning leaders and long spark leaders is still not well understood. Positive and negative leaders seem to behave differently. Negative leaders develop in a step manner, guided by the separate luminous structures termed space stems and space leaders. Positive leaders, on the other hand, are generally thought to have no separate luminous structure involved in their propagation. However, a separate luminous structure observed in a positive leader discharge had been reported in recent literature, suggesting that positive leaders may similarly do steps to negative leaders under certain conditions. Here we report the observation of the positive leader step led by a separate luminous structure at high humidity in laboratory lightning-like discharges. We also found the streamer-like common zone connecting the primary leader channel with the separate luminous structure, as well as the bi-directional development of the separate luminous structure. We hope that these findings would contribute to a better understanding of the nature underlying positive long spark leaders and lightning leaders.

Suggested Citation

  • Shengxin Huang & Weijiang Chen & Zhong Fu & Yufei Fu & Nianwen Xiang & Xinjie Qiu & Weidong Shi & Dengfeng Cheng & Zhiyuan Zhang, 2022. "Separate luminous structures leading positive leader steps," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31409-x
    DOI: 10.1038/s41467-022-31409-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31409-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31409-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. M. Hare & O. Scholten & J. Dwyer & T. N. G. Trinh & S. Buitink & S. Veen & A. Bonardi & A. Corstanje & H. Falcke & J. R. Hörandel & T. Huege & P. Mitra & K. Mulrey & A. Nelles & J. P. Rachen & L. R, 2019. "Needle-like structures discovered on positively charged lightning branches," Nature, Nature, vol. 568(7752), pages 360-363, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Wang, Lingxiao & Hare, Brian M. & Zhou, Kai & Stöcker, Horst & Scholten, Olaf, 2023. "Identifying lightning structures via machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31409-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.