IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30742-5.html
   My bibliography  Save this article

Optical manipulation of Rashba-split 2-dimensional electron gas

Author

Listed:
  • M. Michiardi

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia
    Max Planck Institute for Chemical Physics of Solids)

  • F. Boschini

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia
    Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique)

  • H.-H. Kung

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • M. X. Na

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • S. K. Y. Dufresne

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • A. Currie

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • G. Levy

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • S. Zhdanovich

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • A. K. Mills

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • D. J. Jones

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

  • J. L. Mi

    (Aarhus University)

  • B. B. Iversen

    (Aarhus University)

  • Ph. Hofmann

    (Interdisciplinary Nanoscience Center, Aarhus University)

  • A. Damascelli

    (Quantum Matter Institute, University of British Columbia
    University of British Columbia)

Abstract

In spintronics, the two main approaches to actively control the electrons’ spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material’s spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi2Se3. We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices.

Suggested Citation

  • M. Michiardi & F. Boschini & H.-H. Kung & M. X. Na & S. K. Y. Dufresne & A. Currie & G. Levy & S. Zhdanovich & A. K. Mills & D. J. Jones & J. L. Mi & B. B. Iversen & Ph. Hofmann & A. Damascelli, 2022. "Optical manipulation of Rashba-split 2-dimensional electron gas," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30742-5
    DOI: 10.1038/s41467-022-30742-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30742-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30742-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M.S. Bahramy & P.D.C King & A. de la Torre & J. Chang & M. Shi & L. Patthey & G. Balakrishnan & Ph. Hofmann & R. Arita & N. Nagaosa & F. Baumberger, 2012. "Emergent quantum confinement at topological insulator surfaces," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    2. Xiaojie Liu & Ashish Chanana & Uyen Huynh & Fei Xue & Paul Haney & Steve Blair & Xiaomei Jiang & Z. V. Vardeny, 2020. "Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Anjan Soumyanarayanan & Nicolas Reyren & Albert Fert & Christos Panagopoulos, 2016. "Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces," Nature, Nature, vol. 539(7630), pages 509-517, November.
    4. Marco Bianchi & Dandan Guan & Shining Bao & Jianli Mi & Bo Brummerstedt Iversen & Philip D.C. King & Philip Hofmann, 2010. "Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3," Nature Communications, Nature, vol. 1(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoffroy Kremer & Julian Maklar & Laurent Nicolaï & Christopher W. Nicholson & Changming Yue & Caio Silva & Philipp Werner & J. Hugo Dil & Juraj Krempaský & Gunther Springholz & Ralph Ernstorfer & Jan, 2022. "Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111)," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. B. Arnoldi & S. L. Zachritz & S. Hedwig & M. Aeschlimann & O. L. A. Monti & B. Stadtmüller, 2024. "Revealing hidden spin polarization in centrosymmetric van der Waals materials on ultrafast timescales," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yuhe Yang & Ping Wang & Jiali Chen & Delin Zhang & Chang Pan & Shuai Hu & Ting Wang & Wensi Yue & Cheng Chen & Wei Jiang & Lujun Zhu & Xuepeng Qiu & Yugui Yao & Yue Li & Wenhong Wang & Yong Jiang, 2024. "Orbital torque switching in perpendicularly magnetized materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yang Cao & Hao Ding & Yalu Zuo & Xiling Li & Yibing Zhao & Tong Li & Na Lei & Jiangwei Cao & Mingsu Si & Li Xi & Chenglong Jia & Desheng Xue & Dezheng Yang, 2024. "Acoustic spin rotation in heavy-metal-ferromagnet bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Eva Arianna Aurelia Pogna & Leonardo Viti & Antonio Politano & Massimo Brambilla & Gaetano Scamarcio & Miriam Serena Vitiello, 2021. "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Xingyu Yue & Chunwei Wang & Bo Zhang & Zeyu Zhang & Zhuang Xiong & Xinzhi Zu & Zhengzheng Liu & Zhiping Hu & George Omololu Odunmbaku & Yujie Zheng & Kuan Sun & Juan Du, 2023. "Real-time observation of the buildup of polaron in α-FAPbI3," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    8. Jiaxin Zhao & Antonio Fieramosca & Ruiqi Bao & Kevin Dini & Rui Su & Daniele Sanvitto & Qihua Xiong & Timothy C. H. Liew, 2024. "Room temperature polariton spin switches based on Van der Waals superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jidan Yang & Yu Zou & Wentao Tang & Jinxing Li & Mingjun Huang & Satoshi Aya, 2022. "Spontaneous electric-polarization topology in confined ferroelectric nematics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. B. Arnoldi & S. L. Zachritz & S. Hedwig & M. Aeschlimann & O. L. A. Monti & B. Stadtmüller, 2024. "Revealing hidden spin polarization in centrosymmetric van der Waals materials on ultrafast timescales," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Wibson W. G. Silva & José Holanda, 2023. "One analytical approach of Rashba–Edelstein magnetoresistance in 2D materials," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-7, April.
    12. Andrey Polyakov & Katayoon Mohseni & Roberto Felici & Christian Tusche & Ying-Jun Chen & Vitaly Feyer & Jochen Geck & Tobias Ritschel & Arthur Ernst & Juan Rubio-Zuazo & German R. Castro & Holger L. M, 2022. "Fermi surface chirality induced in a TaSe2 monosheet formed by a Ta/Bi2Se3 interface reaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30742-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.