IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30739-0.html
   My bibliography  Save this article

Eminuscent phase in frustrated magnets: a challenge to quantum spin liquids

Author

Listed:
  • S. V. Syzranov

    (University of California Santa Cruz)

  • A. P. Ramirez

    (University of California Santa Cruz)

Abstract

A geometrically frustrated (GF) magnet consists of localised magnetic moments, spins, whose orientation cannot be arranged to simultaneously minimise their interaction energies. Such materials may host novel fascinating phases of matter, such as fluid-like states called quantum spin-liquids. GF magnets have, like all solid-state systems, randomly located impurities whose magnetic moments may “freeze” at low temperatures, making the system enter a spin-glass state. We analyse the available data for spin-glass transitions in GF materials and find a surprising trend: the glass-transition temperature grows with decreasing impurity concentration and reaches a finite value in the impurity-free limit at a previously unidentified, “hidden”, energy scale. We propose a scenario in which the interplay of interactions and entropy leads to a crossover in the permeability of the medium that assists glass freezing at low temperatures. This low-temperature, “eminuscent”, phase may obscure or even destroy the widely-sought spin-liquid states in rather clean systems.

Suggested Citation

  • S. V. Syzranov & A. P. Ramirez, 2022. "Eminuscent phase in frustrated magnets: a challenge to quantum spin liquids," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30739-0
    DOI: 10.1038/s41467-022-30739-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30739-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30739-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. Kitagawa & T. Takayama & Y. Matsumoto & A. Kato & R. Takano & Y. Kishimoto & S. Bette & R. Dinnebier & G. Jackeli & H. Takagi, 2018. "A spin–orbital-entangled quantum liquid on a honeycomb lattice," Nature, Nature, vol. 554(7692), pages 341-345, February.
    2. Itamar Kimchi & John P. Sheckelton & Tyrel M. McQueen & Patrick A. Lee, 2018. "Scaling and data collapse from local moments in frustrated disordered quantum spin systems," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Torre & B. Zager & F. Bahrami & M. H. Upton & J. Kim & G. Fabbris & G.-H. Lee & W. Yang & D. Haskel & F. Tafti & K. W. Plumb, 2023. "Momentum-independent magnetic excitation continuum in the honeycomb iridate H3LiIr2O6," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. L. Guasco & Yu. N. Khaydukov & S. Pütter & L. Silvi & M. A. Paulin & T. Keller & B. Keimer, 2022. "Resonant neutron reflectometry for hydrogen detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. G. Cassella & P. d’Ornellas & T. Hodson & W. M. H. Natori & J. Knolle, 2023. "An exact chiral amorphous spin liquid," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30739-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.