IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30470-w.html
   My bibliography  Save this article

IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice

Author

Listed:
  • Weiwei Liu

    (Lerner Research Institute, Cleveland Clinic)

  • Hao Zhou

    (Lerner Research Institute, Cleveland Clinic
    Brigham and Women’s Hospital, Harvard Medical School)

  • Han Wang

    (Lerner Research Institute, Cleveland Clinic
    Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University
    Case Western Reserve University
    Case Western Reserve University)

  • Quanri Zhang

    (Lerner Research Institute, Cleveland Clinic)

  • Renliang Zhang

    (Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic)

  • Belinda Willard

    (Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic)

  • Caini Liu

    (Lerner Research Institute, Cleveland Clinic)

  • Zizhen Kang

    (Carver College of Medicine, University of Iowa)

  • Xiao Li

    (Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University
    Case Western Reserve University
    Case Western Reserve University)

  • Xiaoxia Li

    (Lerner Research Institute, Cleveland Clinic)

Abstract

Toll-like receptors/Interleukin-1 receptor signaling plays an important role in high-fat diet-induced adipose tissue dysfunction contributing to obesity-associated metabolic syndromes. Here, we show an unconventional IL-1R-IRAKM-Slc25a1 signaling axis in adipocytes that reprograms lipogenesis to promote diet-induced obesity. Adipocyte-specific deficiency of IRAKM reduces high-fat diet-induced body weight gain, increases whole body energy expenditure and improves insulin resistance, associated with decreased lipid accumulation and adipocyte cell sizes. IL-1β stimulation induces the translocation of IRAKM Myddosome to mitochondria to promote de novo lipogenesis in adipocytes. Mechanistically, IRAKM interacts with and phosphorylates mitochondrial citrate carrier Slc25a1 to promote IL-1β-induced mitochondrial citrate transport to cytosol and de novo lipogenesis. Moreover, IRAKM-Slc25a1 axis mediates IL-1β induced Pgc1a acetylation to regulate thermogenic gene expression in adipocytes. IRAKM kinase-inactivation also attenuates high-fat diet-induced obesity. Taken together, our study suggests that the IL-1R-IRAKM-Slc25a1 signaling axis tightly links inflammation and adipocyte metabolism, indicating a potential therapeutic target for obesity.

Suggested Citation

  • Weiwei Liu & Hao Zhou & Han Wang & Quanri Zhang & Renliang Zhang & Belinda Willard & Caini Liu & Zizhen Kang & Xiao Li & Xiaoxia Li, 2022. "IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30470-w
    DOI: 10.1038/s41467-022-30470-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30470-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30470-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carles Cantó & Zachary Gerhart-Hines & Jerome N. Feige & Marie Lagouge & Lilia Noriega & Jill C. Milne & Peter J. Elliott & Pere Puigserver & Johan Auwerx, 2009. "AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity," Nature, Nature, vol. 458(7241), pages 1056-1060, April.
    2. Yuefeng Tang & Martina Wallace & Joan Sanchez-Gurmaches & Wen-Yu Hsiao & Huawei Li & Peter L. Lee & Santiago Vernia & Christian M. Metallo & David A. Guertin, 2016. "Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    3. Su-Chang Lin & Yu-Chih Lo & Hao Wu, 2010. "Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling," Nature, Nature, vol. 465(7300), pages 885-890, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su-Youn Cho & Young-Soo Chung & Hyoung-Ki Yoon & Hee-Tae Roh, 2022. "Impact of Exercise Intensity on Systemic Oxidative Stress, Inflammatory Responses, and Sirtuin Levels in Healthy Male Volunteers," IJERPH, MDPI, vol. 19(18), pages 1-9, September.
    2. Éverton Lopes Vogt & Maiza Cristina Von Dentz & Débora Santos Rocha & Jorge Felipe Argenta Model & Lucas Stahlhöfer Kowalewski & Samir Khal de Souza & Vitória de Oliveira Girelli & Paulo Ivo Homem de , 2021. "Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    3. Yi-Fang Cheng & Guang-Huar Young & Jiun-Tsai Lin & Hyun-Hwa Jang & Chin-Chen Chen & Jing-Yi Nong & Po-Ku Chen & Cheng-Yi Kuo & Shao-Hsuan Kao & Yao-Jen Liang & Han-Min Chen, 2015. "Activation of AMP-Activated Protein Kinase by Adenine Alleviates TNF-Alpha-Induced Inflammation in Human Umbilical Vein Endothelial Cells," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    4. Alexander J. Hu & Wei Li & Calvin Dinh & Yongzhao Zhang & Jamie K. Hu & Stefano G. Daniele & Xiaoli Hou & Zixuan Yang & John M. Asara & Guo-fu Hu & Stephen R. Farmer & Miaofen G. Hu, 2024. "CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Aurore Claude-Taupin & Pierre Isnard & Alessia Bagattin & Nicolas Kuperwasser & Federica Roccio & Biagina Ruscica & Nicolas Goudin & Meriem Garfa-Traoré & Alice Regnier & Lisa Turinsky & Martine Burti, 2023. "The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Jia Luo & Changfa Tang & Xiaobin Chen & Zhanbing Ren & Honglin Qu & Rong Chen & Zhen Tong, 2020. "Impacts of Aerobic Exercise on Depression-Like Behaviors in Chronic Unpredictable Mild Stress Mice and Related Factors in the AMPK/PGC-1α Pathway," IJERPH, MDPI, vol. 17(6), pages 1-12, March.
    7. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Nadège Zanou & Haikel Dridi & Steven Reiken & Tanes Imamura de Lima & Chris Donnelly & Umberto De Marchi & Manuele Ferrini & Jeremy Vidal & Leah Sittenfeld & Jerome N. Feige & Pablo M. Garcia-Roves & , 2021. "Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30470-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.