IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30138-5.html
   My bibliography  Save this article

Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction

Author

Listed:
  • Kai Xu

    (Shandong University)

  • Chao Ma

    (Hunan University)

  • Han Yan

    (Shandong University)

  • Hao Gu

    (University College London)

  • Wei-Wei Wang

    (Shandong University)

  • Shan-Qing Li

    (Chizhou University)

  • Qing-Lu Meng

    (Shandong University)

  • Wei-Peng Shao

    (Shandong University)

  • Guo-Heng Ding

    (Shandong University)

  • Feng Ryan Wang

    (University College London)

  • Chun-Jiang Jia

    (Shandong University)

Abstract

The metal-support interfaces between metals and oxide supports have long been studied in catalytic applications, thanks to their significance in structural stability and efficient catalytic activity. The metal-rare earth oxide interface is particularly interesting because these early transition cations have high electrophilicity, and therefore good binding strength with Lewis basic molecules, such as H2O. Based on this feature, here we design a highly efficient composite Ni-Y2O3 catalyst, which forms abundant active Ni-NiOx-Y2O3 interfaces under the water-gas shift (WGS) reaction condition, achieving 140.6 μmolCO gcat−1 s−1 rate at 300 °C, which is the highest activity for Ni-based catalysts. A combination of theory and ex/in situ experimental study suggests that Y2O3 helps H2O dissociation at the Ni-NiOx-Y2O3 interfaces, promoting this rate limiting step in the WGS reaction. Construction of such new interfacial structure for molecules activation holds great promise in many catalytic systems.

Suggested Citation

  • Kai Xu & Chao Ma & Han Yan & Hao Gu & Wei-Wei Wang & Shan-Qing Li & Qing-Lu Meng & Wei-Peng Shao & Guo-Heng Ding & Feng Ryan Wang & Chun-Jiang Jia, 2022. "Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30138-5
    DOI: 10.1038/s41467-022-30138-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30138-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30138-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Han Yan & Chun Yang & Wei-Peng Shao & Li-Hua Cai & Wei-Wei Wang & Zhao Jin & Chun-Jiang Jia, 2019. "Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Xiaorui Du & Yike Huang & Xiaoli Pan & Bing Han & Yang Su & Qike Jiang & Mingrun Li & Hailian Tang & Gao Li & Botao Qiao, 2020. "Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Liqun Kang & Bolun Wang & Qiming Bing & Michal Zalibera & Robert Büchel & Ruoyu Xu & Qiming Wang & Yiyun Liu & Diego Gianolio & Chiu C. Tang & Emma K. Gibson & Mohsen Danaie & Christopher Allen & Ke W, 2020. "Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Li, Tian & Feng, Peizhong & Wang, Xinxin & Wang, Shaorong & Ling, Yihan & Shao, Zongping, 2022. "Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel," Applied Energy, Elsevier, vol. 328(C).
    2. Sun, Qunying & Zhang, Huanhuan & Fan, Yanping & Bian, Linyan & Peng, Qiuming & Liu, Baozhong, 2023. "Regulating the electronic structure of Pd nanoparticles through metal alloy–support interactions for enhanced hydrogen generation," Renewable Energy, Elsevier, vol. 211(C), pages 395-402.
    3. Xin-Pu Fu & Cui-Ping Wu & Wei-Wei Wang & Zhao Jin & Jin-Cheng Liu & Chao Ma & Chun-Jiang Jia, 2023. "Boosting reactivity of water-gas shift reaction by synergistic function over CeO2-x/CoO1-x/Co dual interfacial structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Xin Liu & Shan-Qing Li & Wei-Wei Wang & Wen-Zhu Yu & Wu-Jun Zhang & Chao Ma & Chun-Jiang Jia, 2022. "Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jian Zhang & Dezhi Zhu & Jianfeng Yan & Chang-An Wang, 2021. "Strong metal-support interactions induced by an ultrafast laser," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Cong-Xiao Wang & Hao-Xin Liu & Hao Gu & Jin-Ying Li & Xiao-Meng Lai & Xin-Pu Fu & Wei-Wei Wang & Qiang Fu & Feng Ryan Wang & Chao Ma & Chun-Jiang Jia, 2024. "Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xin-Pu Fu & Cui-Ping Wu & Wei-Wei Wang & Zhao Jin & Jin-Cheng Liu & Chao Ma & Chun-Jiang Jia, 2023. "Boosting reactivity of water-gas shift reaction by synergistic function over CeO2-x/CoO1-x/Co dual interfacial structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Zheng Chen & Zhangyun Liu & Xin Xu, 2023. "Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Xin Tang & Chuqiao Song & Haibo Li & Wenyu Liu & Xinyu Hu & Qiaoli Chen & Hanfeng Lu & Siyu Yao & Xiao-nian Li & Lili Lin, 2024. "Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Zelun Zhao & Guang Gao & Yongjie Xi & Jia Wang & Peng Sun & Qi Liu & Chengyang Li & Zhiwei Huang & Fuwei Li, 2024. "Inverse ceria-nickel catalyst for enhanced C–O bond hydrogenolysis of biomass and polyether," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30138-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.