IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30100-5.html
   My bibliography  Save this article

Structural transition and re-emergence of iron's total electron spin in (Mg,Fe)O at ultrahigh pressure

Author

Listed:
  • Han Hsu

    (National Central University)

  • Koichiro Umemoto

    (Earth-Life Science Institute, Tokyo Institute of Technology)

Abstract

Fe-bearing MgO [(Mg1−xFex)O] is considered a major constituent of terrestrial exoplanets. Crystallizing in the B1 structure in the Earth’s lower mantle, (Mg1−xFex)O undergoes a high-spin (S = 2) to low-spin (S = 0) transition at ∼45 GPa, accompanied by anomalous changes of this mineral’s physical properties, while the intermediate-spin (S = 1) state has not been observed. In this work, we investigate (Mg1−xFex)O (x ≤ 0.25) up to 1.8 TPa via first-principles calculations. Our calculations indicate that (Mg1−xFex)O undergoes a simultaneous structural and spin transition at ∼0.6 TPa, from the B1 phase low-spin state to the B2 phase intermediate-spin state, with Fe’s total electron spin S re-emerging from 0 to 1 at ultrahigh pressure. Upon further compression, an intermediate-to-low spin transition occurs in the B2 phase. Depending on the Fe concentration (x), metal–insulator transition and rhombohedral distortions can also occur in the B2 phase. These results suggest that Fe and spin transition may affect planetary interiors over a vast pressure range.

Suggested Citation

  • Han Hsu & Koichiro Umemoto, 2022. "Structural transition and re-emergence of iron's total electron spin in (Mg,Fe)O at ultrahigh pressure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30100-5
    DOI: 10.1038/s41467-022-30100-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30100-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30100-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grace E. Shephard & Christine Houser & John W. Hernlund & Juan J. Valencia-Cardona & Reidar G. Trønnes & Renata M. Wentzcovitch, 2021. "Seismological expression of the iron spin crossover in ferropericlase in the Earth’s lower mantle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Jung-Fu Lin & Viktor V. Struzhkin & Steven D. Jacobsen & Michael Y. Hu & Paul Chow & Jennifer Kung & Haozhe Liu & Ho-kwang Mao & Russell J. Hemley, 2005. "Spin transition of iron in magnesiowüstite in the Earth's lower mantle," Nature, Nature, vol. 436(7049), pages 377-380, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido M. Gianni & Jeremías Likerman & César R. Navarrete & Conrado R. Gianni & Sergio Zlotnik, 2023. "Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Laura Cobden & Jingyi Zhuang & Wenjie Lei & Renata Wentzcovitch & Jeannot Trampert & Jeroen Tromp, 2024. "Full-waveform tomography reveals iron spin crossover in Earth’s lower mantle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30100-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.