IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29811-6.html
   My bibliography  Save this article

Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts

Author

Listed:
  • Richard Y. Liu

    (Institute for Soldier Nanotechnologies
    Department of Chemistry)

  • Sheng Guo

    (Institute for Soldier Nanotechnologies
    Department of Chemistry)

  • Shao-Xiong Lennon Luo

    (Institute for Soldier Nanotechnologies
    Department of Chemistry)

  • Timothy M. Swager

    (Institute for Soldier Nanotechnologies
    Department of Chemistry)

Abstract

In contemporary organic synthesis, substances that access strongly oxidizing and/or reducing states upon irradiation have been exploited to facilitate powerful and unprecedented transformations. However, the implementation of light-driven reactions in large-scale processes remains uncommon, limited by the lack of general technologies for the immobilization, separation, and reuse of these diverse catalysts. Here, we report a new class of photoactive organic polymers that combine the flexibility of small-molecule dyes with the operational advantages and recyclability of solid-phase catalysts. The solubility of these polymers in select non-polar organic solvents supports their facile processing into a wide range of heterogeneous modalities. The active sites, embedded within porous microstructures, display elevated reactivity, further enhanced by the mobility of excited states and charged species within the polymers. The independent tunability of the physical and photochemical properties of these materials affords a convenient, generalizable platform for the metamorphosis of modern photoredox catalysts into active heterogeneous equivalents.

Suggested Citation

  • Richard Y. Liu & Sheng Guo & Shao-Xiong Lennon Luo & Timothy M. Swager, 2022. "Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29811-6
    DOI: 10.1038/s41467-022-29811-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29811-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29811-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Justin D. Smith & Abdelqader M. Jamhawi & Jacek B. Jasinski & Fabrice Gallou & Jin Ge & Rigoberto Advincula & Jinjun Liu & Sachin Handa, 2019. "Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Floriana Moruzzi & Weimin Zhang & Balaji Purushothaman & Soranyel Gonzalez-Carrero & Catherine M. Aitchison & Benjamin Willner & Fabien Ceugniet & Yuanbao Lin & Jan Kosco & Hu Chen & Junfu Tian & Mary, 2023. "Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29811-6. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.