IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29496-x.html
   My bibliography  Save this article

Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window

Author

Listed:
  • Wanjie Wu

    (The Hong Kong University of Science and Technology)

  • Sicong He

    (Southern University of Science and Technology)

  • Junqiang Wu

    (The Hong Kong University of Science and Technology)

  • Congping Chen

    (The Hong Kong University of Science and Technology)

  • Xuesong Li

    (The Hong Kong University of Science and Technology)

  • Kai Liu

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

  • Jianan Y. Qu

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

Abstract

The spinal cord accounts for the main communication pathway between the brain and the peripheral nervous system. Spinal cord injury is a devastating and largely irreversible neurological trauma, and can result in lifelong disability and paralysis with no available cure. In vivo spinal cord imaging in mouse models without introducing immunological artifacts is critical to understand spinal cord pathology and discover effective treatments. We developed a minimally invasive intervertebral window by retaining the ligamentum flavum to protect the underlying spinal cord. By introducing an optical clearing method, we achieve repeated two-photon fluorescence and stimulated Raman scattering imaging at subcellular resolution with up to 15 imaging sessions over 6–167 days and observe no inflammatory response. Using this optically cleared intervertebral window, we study neuron-glia dynamics following laser axotomy and observe strengthened contact of microglia with the nodes of Ranvier during axonal degeneration. By enabling long-term, repetitive, stable, high-resolution and inflammation-free imaging of mouse spinal cord, our method provides a reliable platform in the research aiming at interpretation of spinal cord physiology and pathology.

Suggested Citation

  • Wanjie Wu & Sicong He & Junqiang Wu & Congping Chen & Xuesong Li & Kai Liu & Jianan Y. Qu, 2022. "Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29496-x
    DOI: 10.1038/s41467-022-29496-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29496-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29496-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jaime Grutzendler & Narayanan Kasthuri & Wen-Biao Gan, 2002. "Long-term dendritic spine stability in the adult cortex," Nature, Nature, vol. 420(6917), pages 812-816, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yang Li & Xuewei Chao, 2020. "ANN-Based Continual Classification in Agriculture," Agriculture, MDPI, vol. 10(5), pages 1-15, May.
    3. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    4. Alfredo Rodriguez & Douglas B Ehlenberger & Dara L Dickstein & Patrick R Hof & Susan L Wearne, 2008. "Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29496-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.