IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29471-6.html
   My bibliography  Save this article

PI3Kγ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation

Author

Listed:
  • Michael C. Schmid

    (University of California, San Diego)

  • Sang Won Kang

    (Ewha Womans University)

  • Hui Chen

    (University of California, San Diego)

  • Marc Paradise

    (University of California, San Diego)

  • Anghesom Ghebremedhin

    (University of California, San Diego)

  • Megan M. Kaneda

    (University of California, San Diego)

  • Shao-Ming Chin

    (University of California, San Diego)

  • Anh Do

    (University of California, San Diego)

  • D. Martin Watterson

    (Northwestern University)

  • Judith A. Varner

    (University of California, San Diego
    University of California, San Diego)

Abstract

Myeloid cells play key roles in cancer immune suppression and tumor progression. In response to tumor derived factors, circulating monocytes and granulocytes extravasate into the tumor parenchyma where they stimulate angiogenesis, immune suppression and tumor progression. Chemokines, cytokines and interleukins stimulate PI3Kγ-mediated Rap1 activation, leading to conformational changes in integrin α4β1 that promote myeloid cell extravasation and tumor inflammation Here we show that PI3Kγ activates a high molecular weight form of myosin light chain kinase, MLCK210, that promotes myosin-dependent Rap1 GTP loading, leading to integrin α4β1 activation. Genetic or pharmacological inhibition of MLCK210 suppresses integrin α4β1 activation, as well as tumor inflammation and progression. These results demonstrate a critical role for myeloid cell MLCK210 in tumor inflammation and serve as basis for the development of alternative approaches to develop immune oncology therapeutics.

Suggested Citation

  • Michael C. Schmid & Sang Won Kang & Hui Chen & Marc Paradise & Anghesom Ghebremedhin & Megan M. Kaneda & Shao-Ming Chin & Anh Do & D. Martin Watterson & Judith A. Varner, 2022. "PI3Kγ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29471-6
    DOI: 10.1038/s41467-022-29471-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29471-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29471-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael C. Schmid & Samia Q. Khan & Megan M. Kaneda & Paulina Pathria & Ryan Shepard & Tiani L. Louis & Sudarshan Anand & Gyunghwi Woo & Chris Leem & M. Hafeez Faridi & Terese Geraghty & Anugraha Raja, 2018. "Integrin CD11b activation drives anti-tumor innate immunity," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Megan M. Kaneda & Karen S. Messer & Natacha Ralainirina & Hongying Li & Christopher J. Leem & Sara Gorjestani & Gyunghwi Woo & Abraham V. Nguyen & Camila C. Figueiredo & Philippe Foubert & Michael C. , 2016. "PI3Kγ is a molecular switch that controls immune suppression," Nature, Nature, vol. 539(7629), pages 437-442, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Moret & Irene Pachon Angona & Leandro Cotos & Shen Yan & Kenneth Atz & Cyrill Brunner & Martin Baumgartner & Francesca Grisoni & Gisbert Schneider, 2023. "Leveraging molecular structure and bioactivity with chemical language models for de novo drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Erik Nutma & Nurun Fancy & Maria Weinert & Stergios Tsartsalis & Manuel C. Marzin & Robert C. J. Muirhead & Irene Falk & Marjolein Breur & Joy Bruin & David Hollaus & Robin Pieterman & Jasper Anink & , 2023. "Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    3. Mingming Zhao & Xiaohui Cheng & Pingwen Shao & Yao Dong & Yongjie Wu & Lin Xiao & Zhiying Cui & Xuedi Sun & Chuancheng Gao & Jiangning Chen & Zhen Huang & Junfeng Zhang, 2024. "Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29471-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.